
Time-domain vs frequency-domain identification
for a small-scale helicopter

Meiliwen Wu and Marco Lovera

Abstract In this work the problem of model identification for the fight dynamics
of a small scale helicopter is considered. Two model identification methods, a time-
domain subspace identification method and a frequency-domain output-error one,
are evaluated and compared in detail in terms of time-domain simulations and in
frequency response analyses. Results show that both methods can predict the time-
domain responses in good agreement with the flight test results, with relative advan-
tages and disadvantages which are discussed in detail.

1 Introduction

In recent years, the problem of system identification (SI) of small-scale helicopter
dynamics has been studied extensively. Indeed, there has been seen a significant
growth for the application of small-scale helicopters, such as crop dusting, remote
sensing, search and rescue, goods delivery and many other. Small-scale helicopters
have a high maneuverability, which guarantees a good dynamic performance even
in aerobatic flight motions. Based on these application demands, and in view of
the problem of tuning high-performance control laws, accurate identified dynamic
models are essential for this kind of helicopters.

Unlike full-scale helicopters, for small-scale ones carefully modeling accord-
ing to first principles does not guarantee an accurate model predicting the whole-
envelope dynamic behavior. Nonlinear modeling is challenging because of their
different designs and low-Reynolds aerodynamics. Looking at previous modeling
experiences of small-scale helicopters, from heavier weight to the light, there are
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several classical research platforms: 10 kg ∼ 100 kg: Yamaha R-50 [1], AF25B [2];
5 kg ∼ 10kg: MIT X-cell [3,4,5], Evolution-EX [6], NUS Raptor 90 SE HeLion [7]; 1
kg ∼ 5 kg: Raptor 50 [8]; micro range below 1kg: HoneyBee [9], etc.. Although the
methods and dynamic features of the listed researches vary, there are some common
points. First, a simple but accurate model is always a desired objective. The mod-
eling may begin from first principles, but ends in all cases with a model order no
more than 13th, which always contains the rigid body dynamics, rotor flap dynam-
ics, and stabilizer bar dynamics. Second, the frequency-domain and time-domain
analysis are essential in the process. A combination of the two is becoming a trend
for getting more information from the flight data.

In frequency-domain rotorcraft SI, linear model identification has become a
standardized procedure, typically realized by the software package CIFER [1,10]. In
CIFER, the time-domain flight data is used to estimate frequency response functions
and the corresponding coherence function to identify Single-Input Single-Output
(SISO) or Multiple-Input Multiple-Output (MIMO) models. The method removes
noise and extracts frequency-domain information in a computationally efficient way.
However, the method is established based on iterative calculation. The initial set-
tings will influence the iteration results greatly, which will be an engineering prob-
lem when dealing with a complex unknown model. The windowing and averaging
procedures that perform Fourier transform and estimation should also be carefully
selected. Additionally, the CIFER method can only analyze linear models; for non-
linear model identification, the method will not be suitable.

Apart from the frequency-domain identification mainly by CIFER, time-domain
identification has more classifications, such as the maximum likelihood (ML) es-
timator, prediction error method (PEM), subspace method, etc.. Specially, Sub-
space Model Identification (SMI) methods [11] have been proven extremely success-
ful in dealing with complex MIMO system such as helicopters. SMI algorithms
works in a very natural and noniterative way when dealing with MIMO models and
the involved computations can be carried out in a numerically stable and efficient
way without needing to consider the initial values and windowing structure like
in CIFER. About two decades ago, only SMI algorithms such as MOESP (Mul-
tivariable Output Error State Space) and bootstrap-based [12,13,14,15] were consid-
ered. The latest developments of SMI method have not been well exploited, such
as the unbiased model estimation from data collected under controlled feedback,
or continuous-time models using Lagrange-based data transformations. Preliminary
results have been obtained using predictor-based SMI (see, e.g., [16,17,18]). PBSIDopt
differs from the original PBSID algorithm in the computation of the predictors. In
the optimized algorithm, the estimation of the predictors is formulated as a weighted
least squares problem. PBSIDopt is proofed to be asymptotically efficient in a num-
ber of examples [19].

This study compares a frequency-domain method (CIFER) with a time-domain
method (PBSIDopt ) of SI in extracting the coupled roll/pitch linear model in hover
condition on an 8.1 kg small-scale helicopter. The paper is organized as follows:
Section 2 introduces the problem and explains the data collection. Section 3 shows
the two approaches from frequency domain and time domain respectively. Section 4
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presents the identification results and validations. In Section 5, the main conclusions
are given.

2 Problem statement and data illustration

In this work, the identification dataset was acquired on an 8.1 kg small-scale single-
rotor JR700 helicopter (Figure 1). The main parameters of JR700 compared with
three similar small-scale helicopters are shown in Table 1. This helicopter did not
install any mechanical augmentation component (e.g., the stabilizer bar), whereas
a 3-axis gyro (CGY750) was embedded to stabilize the longitudinal, lateral, and
yaw dynamics. On the helicopter, the onboard computer was used to record the
input control signals and the output responses, e.g., angular velocities, accelerations,
attitude angles, etc. (see Figure 2). For extracting the coupled roll/pitch linear model,
flight tests of sweep motions were manually conducted on lateral and longitudinal
channels in hover by a pilot. For identification purposes each dataset is defined by{

u = [δlon,δlat ]
T

y = [θ ,φ ,q, p]T ,
(1)

where u represents the input signal of two-direction cyclic pitches (normalized
to [-0.5,0.5]) and y contains the two-direction Euler angles and angular velocities. A
total of 9 sets of best sweep-motion flight data are selected for identification. Data
sets have durations of 15 s or 30 s. Additionally, 2 more sets of flight data are used
for validation.

Onboard computer

Main rotor

Tail rotor

Main batteries

Figure 1. The small-scale helicopter JR700.
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Figure 2. Data collection illustration.

Table 1. JR700 physical parameters compared with three similar helicopters

Parameters JR700 Raptor 50 [8] X-cell [1] HeLion [7]

Gross weight (kg) 8.1 4.8 8.15 9.75
Rotor solidity 0.052 0.05 0.05 0.055
Blade inertia (kg ·m2) 0.04 0.035 0.02 0.055
Main rotor diameter (cm) 153.4 134.37 152.4 141
Rotor speed (rad/s) 178 191 167 193.73

3 Approach

In this section some background on the methods and tools employed in this study
is provided. Specifically, as for frequency-domain identification a grey-box model
approach has been adopted, in the first subsection the model structure for the flight
dynamics of the small-scale helicopter under study is also presented.
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3.1 Frequency-domain method: CIFER

In order to better select the order of the model, the dynamic features of the coupled
roll/pitch model should be checked in advance.

The helicopter as a whole can be regarded as a 6-DoF rigid body system [20].
According to Newton-Euler equations,

v̇ =
1
m

F−ω× v

ω̇ = I−1M− I−1(ω× Iω)

Θ̇ = Φ(Θ)ω,

(2)

where v is the linear velocity vector, ω is the angular velocity vector, and Θ is
the vector of Euler angles. F and M are the external force and moment vectors. I is
the matrix of moment of inertia. Φ is the velocity transformation matrix.

Additionally, the small-scale helicopter has a considerable high-frequency of mo-
tion, so the high-frequency features of the main rotor dynamics cannot be neglected.
The flapping dynamics of the rotor can be expressed as quasi-steady coupled first-
order tip-path-plane equations [1],{

τ f ȧ =−a− τ f q+Abb+Aδlon
δlon +Aδlat

δlat

τ f ḃ =−b− τ f p+Aba+Bδlon
δlon +Bδlat

δlat ,
(3)

where a and b are the longitudinal and lateral flapping angles, τ f is the rotor time
constant, Ab, Aδlat

and Bδlon
are the coupling parameters and Aδlon

, Aδlat
, Bδlon

, and
Bδlat

are the maneuver coefficients. Finally, considering the 2 states corresponding
to the flapping dynamics, an order 6m coupled roll/pitch, dynamic model is studied.
The state space model can be expressed as

ẋ = Ax+Buτ(t)

y =Cx+Duτ(t),
(4)

where the state is x = [θ ,φ ,q, p,a,b]T and uτ(t) =
[
δlon(t− τlon) δlat(t− τlat)

]T
is the delay vector. According to the above dynamic analysis, the equations can be
expanded as


θ̇

φ̇

q̇
ṗ
ȧ
ḃ

(t)=


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 Ma 0
0 0 0 0 0 Lb
0 0 −1 0 −1/τ f Ab/τ f
0 0 0 −1 Ab/τ f −1/τ f




θ

φ

q
p
a
b

(t)+


0 0
0 0
0 0
0 0

Aδlon
/τ f Aδlat

/τ f
Bδlon

/τ f Bδlat
/τ f


[

δlon(t− τlon)
δlat(t− τlat)

]

(5)
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
θ

φ

q
p

(t) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0




θ

φ

q
p
a
b

(t). (6)

As for the system identification procedure, in the frequency domain, the Fourier
transforms of the input and output data ([U( jω),Y ( jω)]) can be related by a
frequency-response function H( jω):

Y ( jω) = H( jω)U( jω) (7)

which can also be expressed as a combination of magnitude and phase:

H( jω) = |H( jω)|e− jφ( jω). (8)

The magnitude and phase expressions are commonly used in frequency-domain
analysis. For a MIMO system, H is a matrix, relating to different inputs and outputs.
The complex frequency-response function relates the input auto-spectral density
function Guu( jω) with the input-output cross-spectral density function Guy( jω).

H( jω) = G−1
uu ( jω)Guy( jω). (9)

Then, the coherence function is defined as [10],

γ
2
yu =

|Gyu|2

GuuGyy
≤ 1 (10)

and a minimum value of 0.6 for γ2 is used as the lower limit in CIFER. At γ2

lower than 0.6, the random error of the frequency responses will be too high and the
flight data analysis results will not be reliable.

The cost function in CIFER has the general form

J(Θ) = ∑ε(ω,Θ)TW (ω)ε(ω,Θ) (11)

where ε is the vector of magnitude and phase errors. The weight function W
adopts the coherence function. The cost value quantifies the matching quality. The
smaller the cost value, the higher the matching degree in frequency domain. Ac-
cording to CIFER, a cost value lower than 100 can reflect a good quality of the
identification results. The cost function should be lowered as much as possible. In
MIMO identification, CIFER makes use of FRESPID, MISOSA, COMPOSITE and
DERIVID panels.
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3.2 Time-domain method: predictor-based subspace model
identification (PBSIDopt)

As illustrated in [21], PBSID is a time-domain subspace model identification algo-
rithm with the ability of dealing with data generated in closed-loop. It belongs to
the class of black-box methods: it allows to determine dynamics model of a system
using only the input-output data gathered in the identification experiments. The ob-
tained model is unstructured, namely with a non-physically motivated state space.
Furthermore, since PBSID is a SMI algorithm, it is a non-iterative method: it can
be implemented with numerically stable and efficient tools from numerical linear
algebra and it has proved to be extremely successful in dealing with the estima-
tion of state-space models MIMO systems in a number of rotorcraft applications
(see [18,22]).

The PBSID algorithm, which is briefly described in the following, considers the
finite dimensional, LTI state space model class

x(k+1) = Ax(k)+Bu(k)+w(k)
ỹ(k) = Cx(k)+Du(k)+ν(k) (12)

where x(k) ∈ Rn, u(k) ∈ Rm, ỹ(k) ∈ Rp and {ν(k),w(k)} are ergodic sequences of
finite variance satisfying

E[
[

w(t)
ν(t)

][
w(s)T ν(s)T ]] = [Q S

ST R

]
δs,t ,

with δs,t denoting the Kronecker delta function, possibly correlated with the input
u(k).

Let now z(k) =
[
uT (k) yT (k)

]T and Ā = A−KC, B̄ = B−KD, B̃ =
[
B̄ K

]
, where

K is the Kalman gain associated with (12), and note that system (12) can be written
as

x(k+1) = Āx(k)+ B̃z(k)

y(k) =Cx(k)+Du(k)+ e(k), (13)

where e is the innovation vector. The data equations for the PBSID algorithm can
be then derived by noting that propagating p−1 steps forward the first of equations
(13), where p is the so-called past window length, one gets

x(k+2) = Ā2x(k)+
[
ĀB̃ B̃

][ z(k)
z(k+1)

]
... (14)

x(k+ p) = Āpx(k)+K pZ0,p−1

where
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K p =
[
Āp−1B̃0 . . . B̃

]
(15)

is the extended controllability matrix of the system and

Z0,p−1 =

 z(k)
...

z(k+ p−1)

 .
Under the considered assumptions, Ā represents the dynamics of the optimal one-
step ahead predictor for the system, so the term Āpx(k) is negligible for sufficiently
large values of p and we have that

x(k+ p)'K pZ0,p−1.

As a consequence, the input-output behaviour of the system is approximately given
by

y(k+ p)'CK pZ0,p−1 +Du(k+ p)+ e(k+ p)
... (16)

y(k+ p+ f )'CK pZ f ,p+ f−1 +Du(k+ p+ f )+

+ e(k+ p+ f ),

so that, introducing the matrix notation defined in the previous subsection, the data
equations are given by

X p, f 'K pZ̄p, f

Y p, f 'CK pZ̄p, f +DU p, f +E p, f . (17)

Considering p = f , estimates for the matrices CK p and D are first computed by
solving the least-squares problem

min
CK p,D

‖Y p,p−CK pZ̄p,p−DU p,p‖F . (18)

Defining now the extended observability matrix Γ p as

Γ
p =


C

CĀ
...

CĀp−1

 (19)

and noting that the product of Γ p and K p can be written as
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Γ
pK p '


CĀp−1B̃ . . . CB̃

0 . . . CĀB̃
...
0 . . . CĀp−1B̃

 , (20)

such product can be computed using the estimate ĈK p of CK p obtained by solv-
ing the least squares problem (18). Recalling now that X p,p ' K pZ̄p,p it also
holds that Γ pX p,p ' Γ pK pZ̄p,p. Therefore, computing the SVD Γ pK pZ̄p,p =

UΣV T an estimate of the state sequence can be obtained as X̂ p,p = Σ
1/2
n V T

n =

Σ
−1/2
n UT

n Γ pK pZ̄p,p, from which, in turn, an estimate of C can be computed by
solving the least squares problem

min
C
‖Y p,p− D̂U p,p−CX̂ p,p‖F . (21)

The final steps consist of the estimation of the innovation data matrix E p, f
N

E p, f
N = Y p,p−ĈX̂ p,p− D̂U p,p (22)

and of the entire set of the state space matrices for the system, which can be obtained
by solving the least squares problem

min
A,B,K
‖X̂ p+1,p−AX̂ p,p−1−BU p,p−1−KE p,p−1‖F . (23)

4 Results and discussions

4.1 Frequency domain results

The valid frequency ranges (γ2 ≥ 0.6) of the flight data are shown in Table 2. There
are 6 evaluation channels, 4 main-axis responses: [δlon/q, δlon/θ , δlat/p, δlat/φ ]
and 2 off-axis responses: [δlon/p,δlat/q]. As shown in the data, main-axis responses
have high coherence up to 30 rad/s. However, the coherence in off-axis responses is
limited.

The identification results of CIFER are presented in Table 3, utilizing the coupled
roll/pitch model in equations (5) and (6). Among the identified parameters, there
is one rotor aerodynamic parameter τ f , two aerodynamic derivatives [Ma,Lb], two
main-axis maneuver coefficients [Aδlon

,Bδlat
], and several off-axis parameters. In the

table, all of the percentage Cramer-Rao bounds (CR% in the table) of the parameter
estimates are lower than 20%, and the insensitivity is quite low. The average cost
function of the coupled roll/pitch model is 41.5.

The frequency results compared with the nonparametric frequency response
functions of flight data are shown in Figure 3. In the main-axis, the magnitude pre-
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dictions match well with the flight responses, while the phase predictions present
some errors in high-frequency above 10 rad/s. The coherence of channels [δlon/θ ,δlat/φ ]
are slightly lower than that of channels [δlon/q,δlat/p]. Indeed, the quality of angu-
lar velocity predictions dominates the identification performance on this coupled
roll/pitch model. Figures 3c and 3d show the off-axis results. A lower matching de-
gree is discovered in these off-axis predictions compared with the main-axis, con-
sidering the relative low coherence and short frequency range of these channels. In
general, CIFER gives a good quality model in predicting the frequency responses of
the flight data.

Table 2. Frequency ranges (rad/s) in CIFER.

δlon δlat
q 1.9 - 27 1.9 - 6.5
p 1.9 - 10 1.9 - 35
θ 1.9 - 15 -
φ - 1.9 - 31

Table 3. Identified parameters in hover from CIFER.

Parameters Value CR [%] Insensitivity [%]
τ f 0.05136 6.934 0.8350
Ma 348.4 8.341 1.871
Lb 721.7 5.466 1.787
Ab 0.5133 5.725 2.485
Aδlat

0.0721 8.372 2.371
Aδlon

0.4505 6.870 1.240
Bδlat

0.4406 6.688 1.379
Bδlon

-0.07667 6.934 0.8350
τlon 0.03099 16.40 5.196
τlat 0.03238 9.913 3.534
costθ/δlon

31.21546
costq/δlon

35.99568
costp/δlon

47.52514
costφ/δlat

36.85730
costq/δlat

46.73137
costp/δlat

50.64457
costtotal 41.4949
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Figure 3. CIFER identification results in frequency domain.
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4.2 Time domain results

For the time-domain PBSIDopt method, among the 9 sets of flight data mentioned
in Section 2, 5 sets are chosen for model identification, while the remaining 4 sets
are used for cross validation. In the calculation, the singular values are shown in
Figure 4. The first four points in the figure represent the low-frequency features of
the rigid-body dynamics. During the identification, it is discovered that by adding
2 more states to the 4-order basic dynamics the identified PBSIDopt model can be
greatly improved with lower time-domain and frequency-domain errors. Thus, the
model order is decided to be 6. In addition, p is decided equal to 13 and f is set
equal to p. This decision is formed by several tries to acquire the best time-domain
and frequency-domain performance in matching the flight responses.

Note that in system setting (Eq: 12), the incorrelation between u and w, ν is not
required, thus the PBSIDopt , unlike most other identification techniques, is feasible
also for systems operating under feedback, just like the condition in Figure 2. The
main-axis delay τ of the dynamics model is decided referring to the CIFER results.

The time-domain validation results are shown in Figures 6 and 7 in longitudinal
and lateral directions. In the figures, the simulations of the angular velocity follow
the original data well with small phase deviations. Apart from some errors in the
peak value of the sweeps, the amplitude simulations have good accuracy. The cal-
culations of θ and φ are basically good in following the original trends. There are
small time delays discovered between the calculated θ and φ with the flight re-
sponses. In general, the PBSIDopt method is successful in identifying the coupled
roll/pitch model for the longitudinal and lateral time-domain responses.

0 10 20 30 40 50
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10

100

Si
ng
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ar
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ue
s

Numbers

n=6

Figure 4. Singular values in PBSIDopt calculation.
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4.3 Comparisons

Finally, Figures 8 and 9 show the time-domain comparisons of the PBSIDopt model
and the CIFER model. In q and p, there are tiny differences between the two models
compared with the flight responses. In θ and φ , simulations in both models follow
the original attitude angles in a satisfactory way. As time goes on, the attitude sim-
ulations of both models do not deviate from the original data greatly. Specifically
note that simulations of the sweep amplitude of θ and φ by PBSIDopt model are
closer to the flight responses than the CIFER model.

In addition, the two models are compared in the frequency domain in Fig-
ure 10. The nonparametric frequency responses of the flight responses are ex-
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Figure 6. Longitudinal validations of PBSIDopt in time domain.

ported by CIFER software, shown in the black lines. In channel δlon/q, CIFER
and PBSIDopt models give similar results on the magnitude and phase predictions.
In low-frequency range below 3 rad/s, PBSIDopt shows over prediction in phase. In
channel δlat/p, both methods have similar frequency features below 15 rad/s, but
above 15 rad/s, model of PBSIDopt show closer results in phase but larger errors in
magnitude to the nonparametric flight data. Similar to the main-axis angular veloc-
ity predictions, in δlon/θ , PBSIDopt model shows over prediction in phase below
4 rad/s, and in δlon/φ , PBSIDopt model shows more accurate results in phase but
larger deviations in magnitude compared with CIFER model above 15 rad/s.
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In the off-axis responses (Figures 10 (e) and 10 (d)), CIFER and PBSIDopt mod-
els have similar performances in predicting δlat/q, while in δlon/p, PBSIDopt model
shows larger deviations in magnitude and in low-frequency phase. Generally speak-
ing, in the frequency domain, the CIFER model matches the flight responses better
than the PBSIDopt model. It is noteworthy that even if there are some underestimates
by the PBSIDopt model to predict on the high-frequency and off-axis responses, the
time-domain validations show good results in simulating the attitude and angular
velocities.

The eigenvalues of the two models are shown in Table 4. The eigenvalue posi-
tions show some differences between the two methods. Note that the two complex
values of lateral and longitudinal modes dominate the identified dynamics, which
are captured correctly by both methods.The small values represent the q/θ and p/φ
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Figure 7. Lateral validations of PBSIDopt in time domain.

responses. In the structured equation 5, these values are zero. The PBSIDopt method
is quite efficient and stable during calculations compared with the iterative CIFER
method.
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Table 4. Eigenvalue calculations.

PBSIDopt CIFER
lateral [−6.6480±17.9929i] [−6.3760±23.3735i]
longitudinal [−12.6193±10.1089i] [−13.0953±16.0266i]
small values [−0.6464+0i] [0+0i]

[−0.0861+0i] [0+0i]
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Figure 8. Longitudinal validations in time domain between CIFER and PBSIDopt .
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Figure 9. Lateral validations in time domain between CIFER and PBSIDopt .
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Figure 10. Comparisons between CIFER and PBSIDopt in frequency domain.
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5 Conclusions

In this work, the time-domain PBSIDopt identification method and the frequency-
domain CIFER one are considered in an identification problem of solving a coupled
roll/pitch model of a small-scale helicopter. Both methods are successful in provid-
ing high-accuracy simulations of the time-domain responses, especially the angular
velocity simulations. PBSIDopt model simulates the θ and φ closer to the origi-
nal data than CIFER. In frequency domain, both methods give good estimations in
main-axis responses. In off-axis frequency predictions, CIFER model presents bet-
ter results than PBSIDopt model. Both methods capture the main dynamics modes
of the coupled roll/pitch model in the eigenvalues. The model got from CIFER has
physical meanings, while the model obtained by PBSIDopt is non-structured. The
process in PBSIDopt has high efficiency and stability compared with in CIFER. Fu-
ture work will be done to extract a structured model from the PBSIDopt results.
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