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Abstract   A very large number of asteroids populates our Solar System; some of 

these are classified as Near Earth Objects (NEO), celestial bodies whose orbit lies 

close to or even intersects our planet’s, a few of which are believed to pose a poten-

tial threat for Earth. Their hazardous nature has caught the eye of both the public 

and the scientific community and the concern has grown over the past decades, fol-

lowed by a multitude of studies on the different aspects that characterise this prob-

lem. The most common solution that has been proposed in order to face a potential 

impact situation is the deflection of incoming asteroids in such a way that their en-

counter with the Earth is avoided or modified to an extent that it does not pose a 

threat through a kinetic impactor. The present article will expand on previous works 

in this sector, with the aim of defining an optimal orbit deviation strategy with the 

objective of not only avoiding the incumbent close-encounter, but to also reduce the 

risk of a future return of the NEO to the Earth. To this purpose, the effect of the 

deflection will be studied by means of the b-plane, a very convenient reference 

frame used to characterise an encounter between two celestial bodies, to determine 

a deflection strategy that will avoid the conditions corresponding to a resonant re-

turn of the asteroid to the Earth. The results presented in this work feature an ana-

lytical correlation between the deflection action and the resulting displacement 

along the axes of the b-plane and the description of optimal deflection techniques 

based on the aforementioned formulas. Finally, a numerical implementation of the 

deflection strategy demonstrates its effectiveness when applied to a test scenario. 
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1 Introduction 

Asteroids and comets are celestial bodies mainly composed by rocks and ice re-

spectively. While they are very interesting from a scientific point of view, as their 

properties are largely unchanged since the time of the planets’ formation, they can 

present a very significant danger for life on Earth in the case of an impact on the 

surface of our planet. The objects that could pose such a threat belong to the Near-

Earth Object (NEO) family, defined as asteroids and comets with a perihelion dis-

tance of less than 1.2 AU [1]. Most NEOs are asteroids, referred to therefore as 

Near-Earth Asteroids (NEAs). The most dangerous NEAs also belong to the class 

of Potentially Hazardous Asteroids (PHAs), which feature a Minimum Orbit Inter-

section Distance (MOID), the minimum geometric distance between two orbits, of 

less than 0.05 AU and an absolute magnitude of 22.0 or brighter [1]. Of the over 

than 600,000 known asteroids, more than 16,000 are classified as NEOs, of which 

in turn around 10% fall in the category of PHAs [2]. Despite the seemingly high 

numbers, the probability of an impact is low, but the damage it could produce is 

very significant [3]. 

Another aspect of this threat is represented by the possibility of a NEO which 

has already flown close to the Earth to return to our planet a few years down the 

line. This phenomenon is known as a resonant return [4] and is determined by the 

possibility of a first close approach to deviate a small body’s orbit in such a way 

that the new orbit will lead to a future encounter. A notable case of this effect is 

represented by asteroid 2010 RF12, a PHA discovered during a close approach in 

2010, which will return to our planet several times in the future. The closest of these 

encounters is predicted around the 6th of September 2095, where it will approach 

the Earth as close as 1.209·10-4 AU [5]. 
In this article, the kinetic impactor strategy will be considered as the sole deflec-

tion technique in awe of its relative simplicity and ease of correlation with the ob-

tained deflection. This is in line with the UN-mandated Space Mission Planning 

Advisory Group’s (SMPAG) statement defining the kinetic impactor as the most 

viable deflection technique at this stage [6]. Furthermore, its modelling will be car-

ried out in a simplified manner, neglecting effects due to momentum dissipation and 

non-uniform composition of the target, as well as the effect of a possibly uneven 

geometry paired with a rotation of the body [7]. The article is organised as follows: 

Sect. 2 describes the b-plane and its properties, Sect. 3 details the modelling used 

for the deflection and its effect on the encounter, as well as the optimal deflection 

strategy, Sect. 4 features a test case in which the aforementioned strategy is applied 

to the deflection of a NEO and Sect. 5 contains the conclusions discussing the ob-

tained results. 
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2 The B-Plane Representation 

The b-plane, introduced by Öpik [8] and later studied by several authors [4] [7] 

[9], is a very convenient instrument used to characterise fly-bys; the qualities that 

determine its advantages will be illustrated in Sect. 2.1, followed by some consid-

erations on the tools specific to this reference frame, upon which this work is based. 

Finally, a section containing the obtained results inherent to resonant returns, as 

determined through the b-plane itself, will conclude this section.  

2.1 B-Plane Definition 

The b-plane is a planetocentric reference frame {ξ,η,ζ}, such that ξ and ζ are 

coordinates on the b-plane and η is normal to this plane. The direction of the η-axis 

is identified by the planetocentric velocity vector u, whereas the ζ-axis is directed 

in the opposite direction as the projection of the planet’s velocity vector on the b-

plane and the ξ-axis completes the right-handed reference frame [8]. The impact 

parameter is the intersection of the incoming hyperbola asymptote with the b-plane 

and is therefore defined as 

 2 2b     

 

 

   

 

 

 

 
 

Fig. 2.1 B-plane geometry 

The b-plane has the very useful property to conveniently characterise close ap-

proaches between an object and a planet, as it decouples the two main parameters 

that describe the encounter: the geometric distance and the timing of the close-ap-

proach. It can be shown that the ξ-axis represents the geometric distance between 

the two bodies’ orbits at the encounter, whereas the ζ-axis represents a shift in the 

time of arrival of the object at the planet [4]; a positive value of ζ represents a delay 

and vice-versa for a negative value of the coordinate. The aforementioned properties 

are based on the approximation that, at the time of the encounter, the two orbits are 

straight lines [9]. 

Two different b-planes can be drawn for an encounter when considering a 

patched-conics approach: the one referred to the incoming asymptote of the hyper-

bola and the one relative to the outgoing one. 
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2.2 Öpik’s Theory 

Öpik’s theory for planetary encounters is based on a patched two-body approach. 

The object is considered to be on its heliocentric orbit until it encounters the planet, 

where it transitions to a hyperbolic orbit under the sole attraction of the planet and 

finally returns to a different heliocentric orbit. As the effect of the encounter is con-

sidered as an instantaneous deflection of the object’s velocity vector from its in-

coming asymptote to its outgoing one, Öpik’s theory is more accurate for deep en-

counters. This is due to the planetocentric velocity of the object being higher, thus 

better approximated by a point-like interaction [10].  

2.2.1 Planetocentric Reference Frame 

The following planetocentric reference frame (see Fig. 2.2) is central to the dis-

cussion of Öpik’s theory; it is based on the hypothesis of the planet being on a cir-

cular orbit around the Sun and is defined as follows: X-axis directed along the posi-

tion vector of the planet with respect to the Sun, Y-axis in the direction of the 

planet’s velocity vector and Z-axis completing the right-handed frame. 

 

 

 

 

 

 

Fig. 2.2 Planetocentric reference frame 

Vectors in the planetocentric reference frame are described by means of the an-

gles Θ and ϕ, following the notation used by Valsecchi et al. [4], represented in Fig. 

2.2. Öpik’s theory cannot be used in the case of exactly tangent and coplanar orbits 

and the results become unreliable for orbits approaching these conditions, corre-

sponding to sinΘ 0  [4] [10]. 

2.2.2 B-Plane Tools 

While an extension of Öpik’s original theory was formulated by Valsecchi et al. 

[4] allowing for its use in the case of near misses; a numerical approach has been 

implemented in the present work, to allow for the relaxing of some of the hypothe-

ses (see Sect. 2.4). Nevertheless, many of the results obtained by Valsecchi et al. 
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[4] will be used to characterise the encounter and the theoretical return conditions 

predicted by Öpik’s theory [8]. Amongst these are the description of the planeto-

centric velocity of the object in the planetocentric reference frame and the compu-

tations required to obtain the post-flyby velocity vector and position on the b-plane 

[11]. 

2.3 Resonant Returns 

2.3.1 Resonant Return Circles 

To witness a planetary encounter of the object, under the assumption of Kep-

lerian motion between the two close-approaches, the following condition must be 

satisfied 

 Τ Τ'Pk h  

where ΤP and Τ’ are the periods of the planet and the object after the encounter 

respectively and k and h are integer numbers. Following this approach and consid-

ering the tools discussed in Sect. 2.2.2, a circle can be drawn on the b-plane for each 

couple of values h and k corresponding to a return condition of the small body to 

the planet [4]. These circles are referred to as resonance circles, as they represent 

the loci of orbits that will bring the object back to the planet after a certain amount 

of revolutions of both bodies. 

A convenient notation for the resonant circles is (h,k), to represent the number of 

periods of the deflected small body and the planet necessary to obtain the return 

respectively. This notation can also be applied to the corresponding keyholes, de-

scribed in Sect. 2.3.2. 

The formulation described in this work is based on the assumption that the small 

body’s position coincides with that of the planet with respect to the Sun, as per 

Öpik’s classical theory [8]. However, this simplification still provides a good ap-

proximation of the resonance conditions, as the higher-order terms in ξ and ζ, which 

are present when relaxing the aforementioned hypothesis, is limited to a slight dis-

tortion of the circles [4]. Nevertheless, the conditions corresponding to a return of 

an object to the planet portrayed in the results of this work will be computed nu-

merically in order to guarantee the expected returns (see Sect. 2.4). 

Circles with a value of the radius bR   are considered as dynamically unreach-

able, as ξb is the value of ξ of the incoming trajectory and it is the minimum value 

that the impact parameter can reach in the case that the two orbits are perfectly 

phased (i.e. it corresponds to the MOID) [12]. 

Furthermore, resonant circles can theoretically be drawn for any couple of values 

(h,k). However, as the b-plane is built on the hypothesis of a two-body propagation, 
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the circles corresponding to returns that would be very distant in time cannot be 

considered as representative of the real conditions. A value of 10h k   is a rea-

sonable limit for the choice of resonant circles [9] [13]. 

2.3.2 Keyholes 

The keyholes are the regions of the b-plane that will bring to a subsequent en-

counter, were the asteroid to pass through one of them. They can represent either a 

hit, in which case they are none-other than the pre-images of the planet’s cross-

section at the second encounter on the b-plane of the first, or more generally a sub-

sequent close-encounter (for example the pre-image of the SOI’s cross-section) [4].  

Per their nature, keyholes are linked to the semi-major axis of the asteroid after 

the first fly-by and thus are located in the vicinity of the resonant circles correspond-

ing to their anticipated return. In the case of a purely Keplerian propagation between 

the encounters, the only b-plane coordinate to vary is ζ, as it is related to the timing 

of the encounter, whereas the geometry of the orbit (i.e. the MOID) is unaffected 

[4]. 

The size of keyholes varies based on two main parameters: the distance from the 

ξ-axis and the number of periods connected with the relative resonant circle [9]. 

Keyholes that are situated further from the ξ-axis are larger, as the effect of the fly-

by varies more significantly in space when closer to the planet, leading to very dif-

ferent orbits. Keyholes connected to returns more distant in time are smaller, as the 

time difference at the encounter, due to a given difference in the period after the 

flyby, grows in time. 

2.4 Numerical Keyhole Definition 

This section will show the effect of the passage of a NEO through a keyhole 

during a fly-by of the Earth. As some hypotheses made in defining the resonance 

circles and the relative keyholes in the framework of Öpik’s theory [8] have been 

relaxed, namely the circularity of the Earth’s orbit and the coincidence of the NEO 

and the planet with respect to the Sun during the encounter [4], the precise keyholes 

have been computed numerically through the following algorithm developed in this 

work and inspired on Bourdoux’s work [9]: 

1. The nominal encounter between the asteroid and the planet is recorded (a 

two-body propagation is assumed for both the Earth and the NEO), based 

on the entrance of the asteroid in the planet’s SOI 

2. An array of values of ζ is explored to analyse the period of the correspond-

ing orbit after the fly-by, while keeping the value of the ξ coordinate con-

stant and equal to its nominal value (corresponding to a shift in time of the 

encounter) 
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3. If the resulting post-encounter semi-major axis corresponds to a value of 

the period required for a resonant return after h periods of the NEO and k 

periods of the Earth, given a certain tolerance, the value of ζ is recorded as 

being part of the (h,k) keyhole 

The reason for which the position and size of the keyhole is computed along the 

ζ direction stems from the knowledge that we have of the NEOs’ orbital parameters. 

In practice, small differences in the semi-major axis of an asteroid can have a very 

significant effect on the timing of an encounter when the coordinates are propagated 

for a long integration time [9]. Furthermore, as will be illustrated in Sect. 3, in most 

cases, the deflection along the ζ-axis dominates over the one along the ξ-axis. 

Fig. 2.3 depicts both the analytical resonant circles (grey circles) and the numer-

ically computed keyholes (orange arcs); the keyholes have been computed consid-

ering a variation of the nominal encounter conditions along the ξ-axis, in addition 

to the one along the ζ-axis, to better illustrate the effect. It can be seen that, while 

the shape of the numerical keyholes closely resembles that of the analytical resonant 

circles, their positions on the b-plane are significantly different in awe of the differ-

ent hypotheses on which they are based. 

 
Fig. 2.3 B-plane representation of the 2095 encounter between 2010 RF12 and the Earth; the key-

holes have been obtained numerically through the described technique 

2.5 Effect of the Keyholes 

The following example analyses the encounter between asteroid 2010 RF12 and 

the Earth expected on the 6th of September 2095 [5]. The choice of the NEO is based 
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on 2010 RF12 currently having the highest probability of colliding with the Earth 

amongst the known PHAs, estimated at around 6% for the selected encounter [5]. 

Table 1 shows the Keplerian parameters assumed for this example (where 

MJD2000 is the modified Julian date), obtained through NASA SPICE [14] and 

propagated considering a two-body problem framework. 

 

Table 1 Keplerian parameters of the Earth and the asteroid assumed for this example 

 a [km] e i [rad] Ω [rad] ω [rad] θ [rad] MJD2000 

Earth 1.4972·108 0.0164 2.0800·10-4 3.05 4.99 4.13 3.4942·104 

2010 RF12 1.5739·108 0.1881 0.0160 2.8 4.66 4.68 3.4942·104 

 

Three new initial synthetic conditions corresponding to different values of ζ on 

the pre-encounter b-plane are obtained by keeping the other quantities defining the 

b-plane unchanged (U, Θ, θ and ξ) with respect to the nominal encounter: the centre 

of keyhole (5,4), the centre of keyhole (6,5) and the middle point between these two 

keyholes. The numerical propagation of the synthetic initial conditions is displayed 

in Fig. 2.4. As expected from the initial conditions, the encounters crossing the key-

holes (red and green lines) feature Earth returns after the corresponding numbers of 

periods of the asteroid and the Earth, whereas the point halfway between the con-

sidered keyholes (blue line) does not feature an Earth return in the considered time-

frame (based on the maximum resonant return considered when calculating the po-

sition and size of the keyholes). This condition is therefore desirable for the devia-

tion of an incoming asteroid, as will be discussed in Sect. 4.1. 

 
Fig. 2.4 Distance between 2010 RF12 and the Earth for the considered initial conditions (the key-

holes lead to the expected returns) 
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2.5.1 Validity of the Approach 

We need to consider that the analysis performed so far is conducted in the 

patched-conics method of the Restricted Two-Body Problem (R2BP). In reality, 

NEOs’ orbits need to be propagated in the n-Body Problem (nBP) considering the 

presence of the Solar System planets [11]. Nevertheless, the proposed simplified 

approach can be considered as a viable first approximation for the real case, as the 

results of the R2BP approximation are indicative of the real situation on the short 

period (up to 10 years approximatively, as stated in Sect. 2.3.1). 

 

3 Near-Earth Object Deflection 

This section will describe the modelling approach for the deflection manoeuvre 

and the resulting displacement at the MOID. The maximisation of the deflection 

effect will be discussed considering different objectives, both purely geometrical 

and concerning the b-plane properties. Finally some results relative to the proposed 

techniques will be presented to corroborate the theoretical results. 

3.1 Deflection Model 

The objective of the deviation action is to cause a displacement of the NEO at 

the time of the close approach through an impulsive manoeuvre at a time td. The 

first step in defining the required optimisation strategy is to detail the equations 

applied to the modelling of the deflection. The approach used in this part of the 

work was proposed by Vasile and Colombo [7] and is here expanded to consider 

the projection of the deflection on the b-plane. 

As the perturbed orbit can be considered proximal to the original one, the posi-

tion of the NEO after the deviation can be computed through the use of the proximal 

motion equations in function of the variation of the orbital parameters due to the 

deflection [7], which in turn can be determined through the Gauss planetary equa-

tions derived for finite differences, if an instantaneous perturbation of the NEO ve-

locity vector is considered. This method provides a relatively simple and computa-

tionally inexpensive strategy to determine the effect of a deviation [7]. 

Given the vector scheme in Fig. 3.1, Δr represents the nominal distance between 

the NEO and the planet at the MOID, while δr is the displacement from the nominal 

conditions due to the deflection. 
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Fig. 3.1 Distance vectors at the MOID (Earth in green, non-deviated NEO in orange and deviated 

NEO in red) 

By combining the proximal motion equations and the Gauss planetary ones, the 

following matrix formulation linking the deflection impulse velocity vector δv at 

the deflection point to the deviation vector δr at the MOID can be obtained [7]: 

 





MOID MOID d

MOID MOID d d d

d d d

dr = A da
dr = A G dv = Tdv

δα = G δv
 (3.1) 

where δαd is the vector representing the variation of the orbital parameters due 

to the deflection action. 

It should be noted that the equations presented in this formulation are consistent 

with a Keplerian motion of the involved bodies along elliptical and quasi-circular 

orbits [15]. Even though the deviation is evaluated at the MOID, the formulas pre-

sented in this section (and applied in the following sections) remain valid in the case 

the encounter is not correctly phased and therefore does not take place at the exact 

MOID; this is due to the fact that the encounter is assumed to take place at the 

MOID in the present formulation, but no related restriction is applied to the formu-

las (i.e. the MOID represents the close-encounter conditions). 

3.2 Maximisation of the Deflection 

3.2.1 Geometric Deviation 

As proposed and applied by Colombo [15] to NEO deflection missions, a con-

venient formulation to maximise the relative deviation MOIDδr  is based on max-

imising the quadratic form T
T T  associated with (3.1). This can be achieved by 

choosing an impulse velocity vector δvd parallel to the direction of the eigenvector 

of the matrix T
T T  conjugated to its maximum eigenvalue. This method only con-

strains the direction of δvd while its sign can be chosen to determine the direction 

of the corresponding displacement [7]. The sign is therefore selected such that the 

deviation increases the distance of the asteroid from the Earth at the time of the 

encounter. 

𝜹𝒓 

𝚫𝒓 
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3.2.2 Deviation on the B-Plane 

The method applied to the maximisation of the geometric deviation is extended 

in this paper to maximise both the deviation of the impact parameter 
MOIDδb  and 

the single components on the b-plane 
MOIDδξ  and 

MOIDδζ . In order to use the pre-

viously described procedure, the quantities must be taken as vectors in space and 

expressed as the product of a matrix and the impulse velocity vector. 

Let us consider the achieved deviation for the impact parameter b on the b-plane. 

To do so, the first step must be the computation of the deflection vector in the b-

plane: 

 

  MOID MOID MOID η η
δb = δr - δr ×e e  (3.2) 

where eη is the unitary vector of the η-axis of the b-plane and δbMOID is a vector 

identifying δbMOID, the deviation on the b-plane. 

Considering the vector triple product identity, we have 

           MOID MOID MOID MOID MOID        
η η η η η η η η

e δr e e e δr δr e e δr δr e e  

We can therefore re-write (3.2) as 

    MOID MOID MOID MOID MOID       
η η η η

δb δr δr e δr e e δr e  (3.3) 

The previous expression can also be written in the compact form 

 
MOID MOID

δb
δb M δr  

 

2 2

2 3 1 2 1 3

2 2

1 2 1 3 2 3

2 2

1 3 2 3 1 2

e e e e e e

e e e e e e

e e e e e e

     

     

     

   
 

    
    

δb
M  

where eηi are the components of the unitary vector eη. 

The deviation on the b-plane δbMOID can now be mapped to the deviation ma-

noeuvre δvd: 

 
MOID d d 

δb δb
δb M Tδv T δv  (3.4) 

We have obtained an analytical formulation to describe the deviation on the b-

plane at the MOID as a function of the deflection action, which can be used to obtain 

the direction of the maximum deviation on the b-plane through the optimisation 

technique of Sect. 3.2.1. This is the first innovative result continuing Vasile and 

Colombo’s work [7], which relied on a numerical computation of δbMOID. 

Let us now compute the components of δbMOID (from (3.4)) on the b-plane: 

   MOID MOID MOID  
ζ ζ

δξ δb δb e e ,   MOID MOID MOID  
ξ ξ

δζ δb δb e e  

where eξ and eζ are the unitary vectors of the ξ and ζ axes of the b-plane respec-

tively. 

Through the same procedure applied for the impact parameter in (3.4), we can 

write 

 MOID MOID
δξ

δξ M δb , MOID MOID
δζ

δζ M δb  
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δζMOID and δζMOID are the vectors representing the deflection along the respective 

axes on the b-plane. 
2 2

2 3 1 2 1 3

2 2

1 2 1 3 2 3

2 2

1 3 2 3 1 2

e e e e e e

e e e e e e

e e e e e e

     

     

     

   
 

    
    

δξ
M ,

2 2

2 3 1 2 1 3

2 2

1 2 1 3 2 3

2 2

1 3 2 3 1 2

e e e e e e

e e e e e e

e e e e e e

     

     

     

   
 

    
    

δζ
M  

where eξi and eζi are the components of the respective unit vectors. 

The components of δbMOID in the b-plane can therefore be written in a compact 

fm as: 

 MOID d d d  
δξ δb δξ δb δξ

δξ M T δv M M Tδv T δv  

 MOID d d d  
δζ δb δζ δb δζ

δζ M T δv M M Tδv T δv  (3.5) 

3.2.3 Maximisation of the Components in the B-Plane 

The same method used in [15] to maximise the relative deviation MOIDδr  based 

on maximising the quadratic form T
T T   associated with (3.1) can now be extended 

to maximise MOIDδb , MOIDδ  or MOIDδ . This can be achieved by choosing an 

impulse velocity vector δvd  parallel to the direction of the eigenvector of the matrix 
T

sel sel
T T  (where Tsel  is the matrix mapping the desired vector on the b-plane to the 

deflection action δvd, as described in Sect. 3.2.2) conjugated to its maximum eigen-

value. This method only constrains the direction of δvd while its sign can be chosen 

to determine the direction of the corresponding displacement [7]. The sign is there-

fore selected such that the deviation increases the value of the selected coordinate 

(b, ξ or ζ) of the projection of the deflected encounter conditions on the b-plane. 

Indeed, this method is used to compute the optimal direction of the deflection to 

be imparted to the asteroid as a function of the time before the possible impact Δt. 

Once the deflection direction has been defined, the magnitude of the velocity vector 

δvd  can be increased as much as possible to further deviate the NEO, but the optimal 

direction of deviation does not change. 

3.2.4 Validation of the Eigenvector Method Extension 

The aforementioned analytic maximisation technique of the different b-plane 

components has been successfully validated by comparing its results with the out-

comes of a classical numerical optimisation, performed with MATLAB®’s fmincon 

optimiser (an optimiser based on the “interior point” algorithm). Furthermore, it has 

been shown that employing the analytical technique yields a considerable advantage 

from a computational time standpoint [11]. 
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3.3 Optimal Deflection Direction 

Asteroid 2010 RF12 was chosen as the test subject for this section. The ephemer-

ides data for the PHA has been obtained from NASA SPICE [14]. Furthermore, the 

representation of the b-plane components is shown on the b-plane computed con-

sidering the unperturbed encounter of the NEO with the Earth, instead of the one 

relative to the perturbed relative velocity of the asteroid with respect to the Earth. 

This approach does not impair the outcome of the study as the plane perpendicular 

to the nominal relative velocity and the one perpendicular to the perturbed relative 

velocity are very close to each other [7]. 

3.3.1 Maximum Geometric and Impact Parameter Deviation 

Fig. 3.2 shows the components of the optimal deviation direction for the NEO in 

function of the deflection time Δt, expressed as multiples of the asteroid’s orbital 

period. The values of the components are expressed on a total norm of 1 (i.e. a 

normalised deflection vector is considered); this approach is equivalent to consid-

ering the dimensional velocity vector, as stated in Sect. 3.2.3. 

Concerning the geometric deflection, the normal component is the preferred one 

for low values of Δt until a deviation time depending on the asteroid. From this point 

earlier (i.e. for longer deviation times), the tangent component is the most effective 

one [7]. It should be noted that a deviation in the normal direction would yield prac-

tically no result if performed at 
NEOt kT  . The out-of-plane component’s value is 

not shown, as it is below 10-13. 

The direction of maximum δb increase is different compared with the strategy to 

maximise the geometric distance deviation for small values of Δ NEOt T . From Fig. 

3.2 it can be seen how the tangent component dominates early on for 2010 RF12, 

later (for larger values of Δt) to be replaced by the normal component and finally 

by the tangent component again, aligning with the maximum δr behaviour. 

 
Fig. 3.2 Components of the maximum δr (left) and δb (right) deviation direction for 2010 RF12 
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The oscillations of the normal and out-of-plane components in the neighbour-

hood of Δ NEOt kT  stem from the sign change of those components (which translate 

to oscillations in the logarithmic representation). 

3.3.2 Maximum ξ and ζ Deviation 

In the case of the asteroid 2010 RF12, the maximum δξ deviation direction alter-

nates between out-of-plane and tangent throughout the period. Furthermore, the de-

viation proves very ineffective if performed along the tangent direction at 

Δ NEOt kT , along the normal direction at Δ / 2NEO NEOt kT T   and along the out-

of-plane direction for a value of Δt which varies for each NEO. 

The direction of maximum ζ deviation follows similar rules as the δb maximisa-

tion (see Sect. 3.3.1). This result is consistent with the limited effect of the δξ max-

imisation beyond Δ NEOt T , beyond which the optimal 𝛿𝑏 direction practically co-

incides with the δζ one, as the ζ direction is related to the phasing, which is more 

easily modified than the ξ-related MOID [9]. 

These patterns can be observed in Fig. 3.3. 

 
Fig. 3.3 Components of the maximum δξ (left) and δζ (right) deviation direction for 2010 RF12 

3.4 Deflection Strategy to Avoid the Keyholes 

An effective strategy to prevent a resonant return could be to deflect a NEO in 

such a way that its trajectory crosses the encounter b-plane far from any of the cal-

culated keyholes. The distance from the keyholes is aimed at providing some ro-

bustness to the deflection action towards real-world effects, such as the real deflec-

tion not corresponding to the expected one. Assuming the asteroid could be 

deflected a sufficient amount of time before the first close approach, a deviation 

along the ζ-axis would be the most convenient, as is detailed in Sect. 3.3. For this 

reason, a target value of ζ can be selected based on the following criteria: 
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 Nominal encounter within a keyhole: the target ζ value is located halfway 

between the keyhole in question and the following one in the direction of 

increasing modulus of ζ (deflecting the NEO away from the Earth is a safer 

manoeuvre) 

 Nominal encounter between two keyholes: the middle point between the 

two keyholes is selected as the target ζ value 

The formulas presented in Sect. 3.2.2 can be used to determine the δv vector to 

be applied to the asteroid at the deflection coordinates in order to obtain the desired 

δζ deviation on the b-plane through the following procedure: 

1. Determination of the direction of maximum δζ variation through the eigen-

vector method 

2. Multiplying the modulus of the unitary δv vector by a factor / eig  , 

where δζeig is the displacement along the ζ-axis obtained with the unitary 

δv vector (resulting from the eigenvector method) 

It should be noted that the presented technique features some displacement along 

the ξ-axis (i.e. a change in the MOID) in addition to the desired one along the ζ-axis 

(i.e. a change in the encounter phasing), as the selected direction only guarantees 

the conditions to obtain the maximum value of δζ for a given modulus of δv and 

value of Δt. The displacement along ξ can however be disregarded, as it is consid-

erably smaller with respect to the one along ζ (see Sect. 3.3.2).  

4 Results for the Avoidance of Resonant Encounters 

A fundamental premise to the application in this chapter is that the results fea-

tured in this section are obtained through a R2BP propagation of the coordinates of 

both the asteroid and the Earth since their initial conditions, provided by NASA 

SPICE’s ephemerides data [14], and are therefore not fully representative of the real 

conditions, all the while maintaining their general validity. This is done to better 

highlight the value of the theory derived in Sect. 3 as a preliminary theoretical de-

sign tool for a mission to subsequently be refined in the framework of the n-body 

problem. 
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4.1 Optimal Deflection 

4.1.1 Optimal Deflection of 2010 RF12 

Let us consider a fictitious situation in which the 2095 encounter of 2010 RF12 

with the Earth takes place in one of the b-plane’s keyholes, specifically the (6,5) 

one, leading to a potentially dangerous return of the NEO in the year 2101. This 

condition would clearly be highly undesirable and a deflection mission to the aster-

oid would be recommended. The values of the Keplerian parameters assumed for 

both the Earth and the NEO are the ones previously detailed in Table 1. 

An effective strategy to prevent the expected resonant return could be to deflect 

2010 RF12 in such a way that its trajectory crosses the 2095 encounter b-plane far 

from any of the calculated keyholes. For the scope of this example, the asteroid is 

assumed to be deflected 400 days before the first close approach, allowing the ap-

plication of the strategy described in Sect. 3.4. The target deflection will therefore 

be a δξ value equal to half the distance between the current keyhole (6,5) and the 

next one in the direction of increasing ζ (7,6). 

Fig. 4.1 portrays the b-plane of the encounter; the resonant circles in the figure 

are computed analytically and therefore do not correspond with the numerical key-

holes. The coordinates of the keyholes considered for the optimal deflection strat-

egy, as well as the chosen target ζ value are shown as asterisk symbols. Finally, Fig. 

4.2 displays the propagation of the post-fly-by conditions corresponding to the nom-

inal conditions for the fictitious encounter and the deviated conditions obtained 

through the optimisation strategy in the form of the distance of the NEO from the 

Earth. The line corresponding to the nominal conditions clearly exhibits a return of 

the asteroid to the Earth, whereas the propagation of the deviated NEO suggests that 

the following encounter has been avoided.
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Fig. 4.1 B-plane of the 2095 close-approach of 2010 RF12 with the Earth featuring the synthetic 

initial and deviated conditions 

 
Fig. 4.2 Distance of the synthetic nominal and deviated 2010 RF12 from the Earth 

 

The optimal deviation, based on the procedure presented in this section and the 

assumed data, is obtained for   12.7284 0.0012 0.0002 10  m / s  tnhdv  (ex-

pressed in the tangent-normal-out-of-plane frame of the asteroid) even though a 

weaker deflection could be sufficient to avoid the following encounter. The com-

puted value should be considered as having an ideal magnitude to provide a degree 

of robustness to the obtained result to face the disturbances due to effects that have 
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not been considered, in particular the perturbation of the Keplerian heliocentric mo-

tion due to the presence of the other planets or the effects of the non-ideal deflection 

of the asteroid. 

5 Conclusions 

In this work, based on the theory behind the b-plane derived by Öpik [8] and 

Valsecchi et al. [4], a numerical technique to compute the b-plane keyholes is intro-

duced and applied to the case of an elliptical Earth orbit and non-coincident position 

of a NEO with the planet’s at the time of the encounter. 

The deflection problem is modelled through the use of proximal motion equa-

tions and Gauss’ planetary equations, providing a convenient analytical maximisa-

tion technique, following what had already been done in [7]. The maximisation 

technique was then extended to the impact parameter and the single axes of the b-

plane and an analytical correlation between the deflection velocity vector and the 

displacement on the b-plane is presented. The correlation between the deflection 

and the resulting displacement along the ζ-axis of the b-plane was employed to de-

fine an optimal deflection strategy aimed at avoiding the keyholes, thus reducing 

the probability of a resonant return of the NEO to the Earth. 

These tools have later been applied in the case of the optimal deflection of aster-

oid 2010 RF12, aimed at avoiding the keyhole positions. It has been found that the 

deflection, if performed sufficiently in advance, is most effective if aligned with the 

direction tangent to the asteroid velocity and results in a displacement on the b-

plane predominantly in the direction of the ζ-axis (corresponding to a variation in 

the close-encounter phasing).  

It should be noted that a two-body approach has been considered to model the 

gravitational effects for the scope of this work, as stated throughout the present re-

port. Such an approximation poses an obvious limitation to the validity of the ob-

tained results, especially when considering a long-term propagation of the predicted 

effects. This approach was necessary in order to obtain some of the closed-form 

solutions presented in this paper, such as the aforementioned optimal deflection 

techniques and the exact return in the case of an encounter taking place in a keyhole. 

Nevertheless, the presented results retain their general validity, as discussed in the 

respective results sections, and can serve as a starting point from which to begin 

analysing a real close approach situation.  

To tie to the previous limitation, future developments of this work could feature 

the development of a numerical approach to precisely determine the shape and po-

sition of keyholes in the case of an n-body propagation. A second possible addition 

to this work is represented by the propagation of a set of initial conditions instead 

of a single set of coordinates to account for the probability factor associated with 

the determination of an asteroid’s orbital parameters. Furthermore, the definition of 

a more comprehensive strategy to determine the optimal deviation on the b-plane 
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could be developed, possibly taking into consideration the timing of the expected 

returns associated with each keyhole, as well as the cost of each of the manoeuvres 

required to safely avoid them. Lastly, the modelling of the impact between the 

spacecraft and the NEO could be improved by considering the uncertainty due to 

the lack of precise knowledge about its shape, rotation and composition, giving rise 

to a breadth of possible resulting deviations. 
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