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Abstract This paper proposes a novel trajectory optimization method for air-
launched missiles. The suggested L1-Penalized Sequential Convex Programming
(LPSCP) approach reduces the order of magnitude of computation time by 2, com-
pared to the pseudospectral approach. The new approach is directly applicable to
offline trajectory planning with convergence less than 0.5 second on Intel i7-6700
cpu. Furthermore, the suggested LPSCP method has the potential to be implemented
onboard, which will enable autonomous real-time guidance in the future.

Throughout the paper, a convex approximation method for a generic air-launched
missile guidance problem is outlined. The missile model considers thrust cut-off af-
ter burn time, which is not commonly considered in the domain of sequential convex
methods. After the convexification process, given optimal guidance problem is lo-
cally approximated to form subproblems in conic form, then solved iteratively using
LPSCP algorithm. The proposed method is applied to series of numerical examples
to demonstrate its advantages, compared to classic pseudospectral approach. The
simulation results show clear evidence of effectiveness and versatility of LPSCP
algorithm on optimal missile guidance problems.
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1 Introduction

Guidance technique for homing missiles gained interests after the age of World
War II. The goal of homing missile guidance is to intercept the target by mis-
sile. For example, famous Proportional Navigation (PN) guidance law[18], and its
variants[8, 16], are often utilized for homing guidance. Although started as a heuris-
tic, emergence of optimal control theory eventually lead to a proof that PN guidance
law is actually optimal under certain assumptions.[18] Furthermore, special closed-
form guidance laws even with terminal constraints were derived from optimal con-
trol theories. [7, 9, 16]

However, in order to derive closed-form guidance laws, it was impossible to con-
sider every operational constraints. For example, even maximum field-of-view con-
straint, which is crucial for feasible missile operation, cannot be included in the
derivation of optimal guidance laws due to its nonlinear nature. [5] Even till mod-
ern days, because of limitations on onboard computational capability, missiles are
equipped with closed-form guidance laws.

Nowadays, development of high-speed embedded computers adjoined with state-
of-art optimization techniques are bringing the new wave of missile guidance.
Computational guidance, which emphasizes utilization of numerical techniques in
guidance,[13] has obtained certain interests across the literature. By numerically
solving the missile guidance problem in optimal control sense, it is possible to in-
corporate various nonlinear dynamics and constraints in real-time, while maintain-
ing optimality at the same time. Provided that enough computational capability is
present, advantages of computational guidance technique over classic guidance laws
are evident.

Sequential convex method is one of the high-speed optimization method which
exploits well-defined properties of convex optimization.[4, 10, 13] Interests over
sequential convex techniques are growing after its successful employment in Space
X’s Falcon 9 landing guidance.[3] Sequential convex approach is expanding its fron-
tier from landing guidance problem[1, 17] to more general aerospace guidance prob-
lems. [2, 11, 12]

In this paper, Sequential Convex Programming (SCP) is implemented for gen-
eral homing missile guidance problem. It is worth noting that a thrust component
is considered, even with cut-off after burn time. Furthermore, time-varying mass,
variable air density, and varying aerodynamic coefficients are also incorporated in
the dynamic model.

In order to solve highly nonlinear optimal control problem, stability improvement
on generic SCP method is necessary. Instability due to subproblem infeasibility is
handled using L1 penalty method,[6] which do not interfere with the convexity of
original subproblem. We propose L1-Penalized Sequential Convex Programming
(LPSCP), which combined L1 penalty method with SCP method.

This paper is organized as follows: chapter 2 introduces a novel LPSCP method,
which improved stability and versatility of general sequential convex method. In
chapter 3, we define the optimal missile control problem, and transform it to ap-
proximate convex subproblem. Numerical simulation is performed in chapter 4 to
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show the clear computational advantage of LPSCP method over classic pseudospec-
tral optimal control method. Chapter 5 concludes the paper.

2 L1-Penalized Sequential Convex Programming

For a long time, nonlinear parameter optimization problems were impossible to
solve efficiently. But in the last few decades, certain series of nonlinear program-
ming problems, namely convex programming problems, proved to be globally opti-
mizable in an efficient manner using interior point algorithm.[4] Convex program-
ming problems are defined with convex objective function, convex inequality con-
straints, and affine equality constraints. Nowadays, fast and stable convex optimiza-
tion algorithms are easily accessible via several implementations, from state-of-art
commercial solvers to open-source free solvers.[14]

Still, convex problems only cover limited numbers of nonlinear optimization
problems. Yet it would be desirable if one can exploit enjoyable properties of con-
vex optimization problems (proved global convergence, with polynomial complex-
ity) while solving general nonlinear problems. Inspired from these ideas, Sequential
Convex Programming (SCP) algorithms are developed.[10]

SCP algorithms approximate given nonlinear problems into convex subproblems
in the proximity of current solution estimate. The solution of current convex sub-
problem is utilized to generate an updated solution estimate, which defines a new
convex subproblem. Iterations of successive convexification and substitution even-
tually converges to certain solution estimate, which is a local optimal solution to the
original nonlinear problem. Note that SCP algorithm is a heuristic. However, due
to fast and stable properties of convex algorithms, SCP heuristics converges to the
local optimal solution in a rapid manner.[4]

Let us concentrate on a general nonlinear problem eq. (1) defined with nonlinear
objective function f0(x), nonlinear inequality constraints fi(x) ≤ 0, and nonlinear
equality constraints hi(x) = 0.

minimize f0(x)

subject to : fi(x)≤ 0, i = 1, ...,m
hi(x) = 0, i = 1, ..., p

(1)

Given current solution estimate x(k), we may rearrange, expand, or linearize given
nonlinear functions to convexify eq. (1). General convexification process of nonlin-
ear functions are not well established in the literature. Yet, the simplest convexifi-
cation method is to evaluate the nonconvex part of problem using current solution
estimate, which renders every nonlinearity into constants. Let us define the convex-
ified subproblem eq. (2) with convex objective function f̂0(x), convex inequality
constraints f̂i(x)≤ 0, and affine equality constraints ĥi(x) = 0. In order to limit the
convex approximation to hold in the proximity of current solution estimate, addi-
tional trust-region constraint x ∈T (k) can be added.
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minimize f̂0(x)

subject to : f̂i(x)≤ 0, i = 1, ...,m

ĥi(x) = 0, i = 1, ..., p

x ∈T (k)

(2)

Using the provided convex subproblem eq. (2), SCP algorithm can be generated.
SCP algorithm iterates until the solution estimate reaches a stationary point. That is,
it terminates when the new solution estimate is close enough to the previous one by
εtol . Pseudocode of generic SCP algorithm is provided in algorithm 1.

Algorithm 1 Sequential Convex Programming
Provide an initial guess of solution x(0)

for k = 0 : kmax do
set convex subproblem eq. (2) with x(k)

solve the subproblem to obtain x(k+1)

if |x(k+1)− x(k)| ≤ εtol then
return x(k+1)

end if
end for

Generic SCP algorithm assumes every convex subproblems to be feasible. If not,
the algorithm halts. However, this assumption is not always valid. For certain prob-
lems, its convex subproblems can be infeasible, regardless of feasibility of original
nonlinear problem. Mainly the subproblem infeasibility is due to poor solution esti-
mate provided. If the solution estimate is infeasible to the original nonlinear prob-
lem, it is highly possible that the expanded convex subproblem in the neighborhood
of the guess can be also infeasible. In order to resolve this issue, a L1 penalized
approach can be utilized.

L1 penalty method[6] renders hard constraints in the given problem into soft con-
straints by adding several nonnegative slack variables, which transforms the given
problem to be always strictly feasible. (eq. (3)) Current value of slack variables
directly contains the current constraint violation. Augmenting the sum of slack vari-
ables on the objective function is equivalent to penalizing L1 norm of total constraint
violation, which gives the name L1 penalty method. Since additional slack variables
are introduced as a plain linear term, L1 penalty method always preserves convex-
ity of the original problem. Thus, L1 penalty method can be successfully integrated
with SCP method to ameliorate its stability. The modified SCP method, namely L1-
Penalized SCP(LPSCP) is briefly summarized in algorithm 2.
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minimize f0(x)+ξ ν(
ν =

m

∑
i=1

(v1i + v2i)+
p

∑
i=1

(w1i +w2i)
)

subject to : fi(x)+ v1i− v2i ≤ 0, i = 1, ...,m
v1i,v2i ≥ 0, i = 1, ...,m
hi(x)+w1i−w2i = 0, i = 1, ..., p

w1i,w2i ≥ 0, i = 1, ..., p

(3)

Algorithm 2 L1 Penalized Sequential Convex Programming
Provide an initial guess of solution x(0)

Set initial value of ξ = ξ0
for k = 0 : kmax do

set L1 penalized subproblem eq. (3) with x(k)

solve the subproblem to obtain x(k+1),ν
if ν ≥ εCVtol then

ξ ← αξ

end if
if |x(k+1)− x(k)| ≤ εtol and ν < εCVtol then

return x(k+1)

end if
end for
Start SCP (algorithm 1) with initial guess x(k+1)

3 Problem Formulation

3.1 Missile Dynamic Model

Throughout the paper, a simple two dimensional missile is utilized. Here, the motion
of missile is described using four states, x as downrange, z as altitude1, v as its speed,
and γ as its Flight Path Angle (FPA). It is assumed that four forces are exerted on the
missile: lift (L), drag (D), thrust (T ), and gravity (g). The missile adjusts its Angle
Of Attack (AOA, α) in order to control lift and drag. As a result, a simple 2D missile
dynamic equations of motion can be summarized as eq. (4). Visual representation
of missile dynamic model is given in fig. 1.

1 For a full 6DOF missile model, positive z axis of missile is often defined with respect to nadir
(downward positive). However, for sake of simplicity, here we denoted altitude as z (upward posi-
tive).
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Fig. 1: Illustration of missile dynamic model

ẋ = vcosγ

ż = vsinγ

v̇ =−D
m
+

T cosα

m
−gsinγ

γ̇ =− L
mv

+
T sinα

mv
− gcosγ

v

(4)

L =
1
2

ρv2Sre fCLα α

D =
1
2

ρv2Sre f (CD0 + kC2
Lα α

2)

T =

{
T0, t <= tburn

0, t > tburn

m =

{
m0− ṁt, t <= tburn

m0− ṁtburn, t > tburn

(5)

Here, m=m(t) stands for total missile mass, ρ = ρ(z,v) denotes air density, Sre f
denotes missile reference area. CLα denotes lift coefficient slope (=∂CL/∂α), CD0
denotes zero-lift drag coefficient, and k stands for drag constant.
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3.2 Optimal Missile Guidance Problem

In this paper, optimal missile guidance to Projected Impact Point (PIP) is consid-
ered. PIP is a pre-determined point which the missile desires to make an impact
with the target, at final time t f . If the position of PIP is given as (x f ,z f ), arrival at
PIP gives a boundary condition in optimal control sense.

x(t f ) = x f

z(t f ) = z f
(6)

Also, the initial launch condition at initial time t0 must be considered as another
set of boundary conditions.

x(t0) = x0

z(t0) = z0

v(t0) = v0

γ(t0) = γ0

(7)

Furthermore, limitations on control input must be considered. In this paper, we
considered maximum AOA limit αmax

|α| ≤ αmax or −αmax ≤ α ≤ αmax (8)

In order to maximize the effectiveness of its warhead, it is often desired to ar-
rive at the PIP with its maximum possible speed. In optimal control point-of-view,
maximum speed objective can be mathematically stated as a minimization problem,
comprising every constraints mentioned above. (eq. (9))

minimize : − v(t f )

subject to : eqs. (4) to (8)
(9)

3.3 Convexification of Dynamic Constraints

In order to convexify eq. (9), convexification of dynamic constraint eq. (4) is neces-
sary. Other than that, suggested constraints are already linear, which do not require
further convexification.2

First, change of variable from t to x is necessary in order to fix the domain of in-
dependent variable. Note that x is increasing monotonically in a physically possible
missile guidance situation, which is required for independent variables.

2 Note: Linear functions are subsets of convex functions



8 H.Roh, Y.J.Oh, M.J.Tahk, and C.H.Lee

dz
dx

= tanγ

dv
dx

=− D
mvcosγ

+
T cosα

mvcosγ
− g tanγ

v
dγ

dx
=− L

mv2 cosγ
+

T sinα

mv2 cosγ
− g

v2

(10)

Since dynamic constraints are equality constraints, they have to be linearized
to form affine equality constraints. A naive approach would directly linearize the
dynamic equations of motion. However, separating control inputs can often acceler-
ate the convergence and reduce control oscillations. [12, 11] Hence, control-related
terms must be separated to generate a control-affine form eq. (11). Here, nonlinear
terms of control input are substituted with new control variables, which are defined
in eq. (12).

dz
dx

= tanγ

dv
dx

=

[
−g tanγ

v
−

1
2 ρv2Sre fCD0

mvcosγ

]
+

[
−

1
2 ρv2Sre f kC2

Lα

mvcosγ

]
u2 +

[
T

mvcosγ

]
u3

dγ

dx
=
[
− g

v2

]
+

[
1
2 ρv2Sre fCLα

mv2 cosγ

]
u1 +

[
T

mv2 cosγ

]
u4

(11)

u1 = α

u2 = α
2

u3 = cosα

u4 = sinα

(12)

Linearizing the control-affine dynamics in the current state estimate (z(k),v(k),γ(k))
provides an approximated affine equality constraint to the convex subproblem. For
example, dz

dx can be linearized into: dz
dx = tanγ(k)+ sec2 γ(k)(γ − γ(k)). Closed-form

expressions for dv
dx and dγ

dx can be also derived after tedious calculation, which are
omitted in the text due to its excessive length. In order to show the outline of lin-
earization only, let us denote eq. (11) in matrix form (eq. (14)), with state vector
ζζζ = (z(k),v(k),γ(k)) and control vector uuu = (u1,u2,u3,u4).

dζζζ

dx
= A(ζζζ )+B(ζζζ )uuu (13)

Linearizing eq. (14) in the proximity of current state estimate ζζζ
(k) gives the ap-

proximated affine dynamic constraint.

dζζζ

x
= f (ζζζ (k)

)ζ +B(ζζζ (k)
)uuu+ c(ζζζ (k)

) (14)
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where f (ζζζ (k)
)) = ∂A(ζζζ )

∂ζ
|
ζζζ=ζζζ

(k) , c(ζζζ (k)
) = A(ζζζ (k)

)− f (ζζζ (k)
)ζ (k).

For additional control inputs, alternative expression of eq. (12) can be suggested
as eq. (16). The new form removes α . Certain part of the new control constraints
are actually convex.

u2
1 = u2

u2
3 +u2

4 = 1
(15)

Relaxing equality to inequality transforms the given nonconvex expression into
convex inequality constraint. Note that only half portion of the original nonconvex
constraints are present in the new relaxed constraints.

u2
1 ≤ u2

u2
3 +u2

4 ≤ 1
(16)

Because of relaxation, exact relation between control inputs cannot be assured
to be satisfied. Practically, relaxation error in the optimization process stays in the
acceptable range. Although relaxation degrades the quality of solution, advantage
of rapid computation overwhelms the weakness in the practical domain.

Finally, the control inputs and state variables must be discretized to generate a
convex parameter optimization problem. Any parameter discretization scheme can
be used provided that it does not violate the convex property. First, let us divide the
domain into N equispaced gridpoints, and map the corresponding states onto the
grid.

x→ [x1,x2, ...,xi, ...,xN ]

ζζζ → [ζζζ 1,ζζζ 2, ...,ζζζ i, ...,ζζζ N ]

uuu→ [uuu1,uuu2, ...,uuui, ...,uuuN ]

∆x = (x f − x0)/(N−1)
xi = x0 +(i−1)∆x

ζζζ i = ζζζ (xi)

uuui = uuu(xi)

(17)

Then, every objective and constraints can be described using the discretized state
variables. Furthermore, differentiation associated with dynamic constraints can be
discretized using trapezoidal rule, which preserves the affinity.

ζ̇ζζ i ≈
ζζζ i+1−ζζζ i

∆x
=

1
2
[ f (ζζζ (k)

i+1)ζ +B(ζζζ (k)
i+1)uuu+ c(ζζζ (k)

i+1)

+ f (ζζζ (k)
i )ζ +B(ζζζ (k)

i )uuu+ c(ζζζ (k)
i )]

(18)
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4 Numerical Example and Analysis

Table 1: Summary of Example Scenarios

Scenario Title Objectives x f z f Solution Method

3020 min tf ps minimize t f 30km 20km Pseudospectrala

3020 max vf ps maximize v f 30km 20km Pseudospectral
3020 max vf cvxb maximize v f 30km 20km LPSCPc

3030 min tf ps minimize t f 30km 30km Pseudospectral
3030 max vf ps maximize v f 30km 30km Pseudospectral
3030 max vf cvx maximize v f 30km 30km LPSCP

3040 min tf ps minimize t f 30km 40km Pseudospectral
3040 max vf ps maximize v f 30km 40km Pseudospectral
3040 max vf cvx maximize v f 30km 40km LPSCP

5020 min tf ps minimize t f 50km 20km Pseudospectral
5020 max vf ps maximize v f 50km 20km Pseudospectral
5020 max vf cvx maximize v f 50km 20km LPSCP

a Implemented using GPOPS-II[15]
b t f minimization is omitted due to change of variable from t to x
c Implemented using MOSEK[14]

In order to perform numerical experiments, a guidance mission inspired from
Air-Launched Hit-To-Kill (ALHTK) operation using PAC-3 missile is considered.
The missile is launched mid-air at x0 = 0 km, z0 = 10 km, v0 = 300m/s, γ0 = 0 deg.
Initial mass of the missile is m0 = 320kg, with propellant mass mp = 157.6 kg. The
propellant burns for tburn = 21.47 sec., which gives mass rate of ṁ = 7.34 kg/s.
The nominal thrust of missile is T0 = 16900N. Furthermore, reference diameter is
assumed to be 0.25m, which gives reference area Sre f = 0.0491 m2. Finally, simple
aerodynamic model is employed, with CD0 = 0.2 0.66 depending on mach number
and thrust, k = 0.1, and CLα = 5.0/rad.

In order to demonstrate the advantage of suggested convex approach over classic
pseudospectral approach, twelve example scenarios are considered. Each scenario
is set with different final impact points, objectives, and solution methods. Table 1
summarizes details of example scenarios.

Pseudospectral optimization using GPOPS-II[15] is included to generate several
nominal solutions for comparison purpose. While global optimality of these nominal
solutions are not guaranteed,(which is nature of nonlinear optimization) their local
optimality is assured. Furthermore, t f minimization problem is also implemented in
the pseudospectral approach. Practically, t f minimization problem often generates a
good alternative to v f maximizing trajectory, with similar final velocity result.

LPSCP algorithm is implemented with MATLAB and MOSEK[14]. Convexi-
fied subproblems are implemented as conic optimization problems supported by
MOSEK.
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Identical initial estimates are supplied to both methods. A linear initial guess is
used, which simply connects initial and final states linearly. It mimics the cold-start
case, in which no prior information on optimal trajectory is given.

The optimized control and state trajectories are summarized in figs. 2 to 5. Final
time and velocity results are summarized in table 2, with total cpu time consumed.

Table 2: Summary of Optimization Results

Scenario Title t f (s) v f (m/s) Average Cpu Timea (s)

3020 min tf psb 29.75 1464.3 13.7
3020 max vf ps 29.68 1492.7 12.3
3020 max vf cvxc 29.64 1456.9 0.33

3030 min tf ps 33.43 1440.8 17.6
3030 max vf ps 33.42 1451.9 11.2
3030 max vf cvx 33.09 1471.8 0.32

3040 min tf ps 38.93 1361.9 10.8
3040 max vf ps 38.94 1367.2 11.9
3040 max vf cvx 38.21 1422.5 0.42

5020 min tf ps 44.84 1200.5 5.9
5020 max vf ps 43.58 1325.4 11.1
5020 max vf cvx 43.39 1279.2 0.24

a Based on pc equipped with Intel i7-6700 cpu, with 32GB RAM.
b Based on GPOPS-II default setup, using ipopt nonlinear optimizer.
c Based on MOSEK default setup, with MATLAB fusion library

4.1 Analysis on Pseudospectral Results

Interestingly, min tf series of scenarios converge into suboptimal t f compared to
max vf series, although the suboptimality is very small. However, adjusting initial
guess and maximum t f bound for min tf series scenarios does not provide similar
results to max vf series. While it contradicts common intuition, this seemingly im-
possible phenomenon occur due to the nonlinearity of missile guidance problem.
Specifically, sharp transition of thrust from maximum to zero cannot be precisely
accounted in the pseudospectral regime, which introduces certain amount of dis-
cretization error. The error unfortunately propagates into the optimization process,
which produces suboptimality in the continuous domain. It is one of the reason why
using several similar but different objective functions in practical situations.

While it seems it is hard to reach global optimality, still trajectories supplied
from pseudospectral optimization shows two distinct types of nominal trajectories;
one from min tf series, and one from max vf series. Both trajectories are feasible
and efficient enough in practice.
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Fig. 2: Optimization results for 3020 scenarios
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Fig. 3: Optimization results for 3030 scenarios
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Fig. 4: Optimization results for 3040 scenarios
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Fig. 5: Optimization results for 5020 scenarios
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4.2 Analysis on LPSCP Results

Using LPSCP methods, it is possible to obtain optimized trajectories less than 0.5
second, which highly surpasses that of the pseudospectral method. (Reduction by
95%) Furthermore, it is observable that the trajectories generated from LPSCP al-
gorithm successfully reaches one of nominal trajectories, even with local convex
approximations. While not included in the paper, simple linearization of dynamics
fail to produce results, while suggested control-affine method converges to nominal
solutions. It validates the effectiveness of above suggested convexification process.

The results from LPSCP method obeys initial and final state conditions, as well
as state and control limits. As the result shows, applicability of several constraints
is distinct advantage of numerical guidance algorithms, which was impossible for
classic guidance laws.

Due to relaxation, LPSCP solutions are not strictly feasible. However, the effect
of relaxation is negligible in the resulting trajectories. We expect that strictly feas-
bility can be improved by penalizing the relaxation error, which is beyond scope of
this initial research.

Furthermore, note that the optimal trajectories automatically emerged from crude
initial estimates. When generic SCP algorithm is utilized, it often halts due to infea-
sibility of poor initial estimate, while LPSCP does not. It shows the versatility of
LPSCP algorithm, which improved the sensitivity and stability of SCP algorithms
to initial guesses.

Also note that LPSCP method does not require any knowledge on feasible so-
lutions. On the contrary, classic firing table method, or modern machine learning
based guidance both require enormous amount of prior study on optimal/suboptimal
solutions. This highlights the advantage of LPSCP over other labor-intensive guid-
ance techniques.

5 Conclusion

This paper presents a sequential convex optimization method for missile trajectory
optimization. The main contribution of this paper can be summarized as: (1) LP-
SCP, a stability-improved version of SCP algorithm using L1-penalty method is
proposed. (2) Transformation method of generic missile guidance problem to con-
vex subproblem is developed, which is one of a few kind which incorporates non-
linear thrust component. The suggested algorithm is numerically implemented to an
ALTHK/PAC-3 missile operation model, regarding several scenarios. Although cer-
tain relaxations are exerted on the part of constraints, numerical simulations show
that the solution of convexified problem converges well to the nominal feasible solu-
tions under domain of 0.5 second, regardless of quality of initial guess. The simula-
tion results clearly supports the effectiveness and versatility of the LPSCP algorithm
on the optimal missile guidance problem.
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