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Abstract The increased precision demands of artillery shells require adapted guid-
ance techniques improving the overall impact probability. To this end, the impact
point must be estimated by an Impact Point Prediction (IPP) method in order to cor-
rect the ballistic trajectory to hit the target. This paper presents a novel IPPmethod for
the Zero-Effort-Miss (ZEM) guidance techniques based on a Modified Point Mass
(MPM) model. The development is focused on improving the IPP accuracy by iden-
tifying the roots of uncertainty of existing methods. Nominal trajectory simulation
results show a large improvement in the IPP fidelity leading to lower guidance accel-
erations and actuator demands. This results are confirmed byMonte-Carlo trajectory
simulations with uncertainties in launch condition, aerodynamics and environment.

1 Introduction

Higher operational requirements in range in order to combat distant targets, and
accuracy in order to reduce collateral damage and necessary number of rounds per
target, create the need for guided ammunition. The control mechanisms to steer these
systems range from aerodynamic surfaces [4, 9, 10, 11] over jet thrusters [1, 2, 7]
to inertial loads [10]. The stability of the projectile is guaranteed either dynamic by
fins located at the tail or gyroscopic by a high axial spin rate.

The increased precision demands of artillery shells require new guidance tech-
niques improving the overall impact probability. To this end, the impact point must
be estimated by an Impact Point Prediction (IPP) method in order to correct the
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ballistic trajectory to hit the target. This paper presents a developed IPP method for
the Zero-Effort-Miss (ZEM) guidance techniques based on a modified point mass
model. The development is focused on improving the IPP accuracy by identifying
the origins of uncertainty of existing methods. Nominal trajectory simulation results
show a large improvement in the IPP fidelity leading to lower guidance accelera-
tions and actuator demands. This results are confirmed in the Monte-Carlo trajectory
simulations with uncertainties in launch condition, aerodynamics and environment
though with perfect navigation.

The control of the projectile used in this work is performed by four canards
located at the nose, thus offering a continues time trajectory correction. Low unit
costs favor the usage of existing spin-stabilized projectiles shells retrofitted with
roll-decoupled Course Correction Fuzes (CCF). This concept has a strong coupling
between pitch/yaw dynamics and has a limited amount of control authority due to
its high spin.

The maneuverability characteristics of the projectile demand a well functioning
interaction between guidance and control in order to enable the maximum miss
distance correction for a given angular amplitude of the canard actuator. Therefore,
it is necessary for the guidance to consider the natural ballistic behavior of a spin-
stabilized projectile.

Proportional Navigation (PN) and Zero-Effort-Miss (ZEM) guidance based tech-
niques [14] are evaluated with a reduced-orderH∞ control designed autopilot [12].
Traditionally, PN guidance minimizes the Line-of-Sight (LoS) rate between inter-
ceptor and target resulting in an ideal collision course of a direct straight line, not
matching the ballistic trajectory and requiring relatively large actuator deflections.
ZEM guidance techniques though, correct the miss distance by commanding a com-
pensating acceleration which is proportional to the magnitude of the offset and
divided by the square of the remaining flight time. The offset is determined by the
difference between the location estimated by the Impact Point Prediction (IPP) algo-
rithm and the target. The existing Modified Point Mass (MPM) [8, 6] IPP model uses
several simplifications leading to lower accuracy and higher actuator deflections.
These are examined and resolved in a second MPMmodel and evaluated against PN
and the first ZEM MPM IPP for nominal and Monte-Carlo trajectories.

The paper is structured as follows: Section 2 outlines the projectile concept and its
non-linear airframe model and properties, Section 3 presents the Zero-Effort-Miss
(ZEM) guidance technique, gives and overview of existing Impact Point Prediction
(IPP) methods and describes the further development of a Modified Point Mass
(MPM) to achieve higher accuracy, and finally Section 4 shows the performance
improvement of the developed MPM IPP in nominal and Monte-Carlo trajectory
simulations.
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2 Projectile Concept

The concept of the airframe (Fig. 1) is a dual-spin projectile with a roll-decoupled
Course Correction Fuze (CCF) . The aft part of the airframe holding the payload
spins with a frequency comparable to existing unguided spin-stabilized projectiles.
The roll-decoupled CCF is fitted with four independent actuators. Each one drives
a canard for continuous aerodynamic trajectory correction using the Skid-To-Turn
(STT) nose configuration. All necessary hardware such as sensors, actuators and
processors (guidance & control) are located in the fuze [12].
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Fig. 1 ISL 155 mm course correction fuze concept [12]

2.1 Nonlinear Dynamics and Kinematics

The nonlinear 7DoF model for ballistic dual-spin projectiles [3] was extended for
guidance in [13, 11, 12] and is given below. The projectile translational and attitude
dynamics, written in the body non-rolling frame (BNR, denoted by B′) and projected
in the related body Coordinate System (CS), are:
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The projectile translational and attitude kinematics, written in the BNR and
projected on the local-level L or North east down (NED) CS, are:
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The dynamic states of the system are the linear (u, v,w) and angular (pf, pa, q, r) ve-
locities, and the kinematic states are the linear (xL, yL, zL) and angular (Φf,Φa,Θ,Ψ)
positions.1

The external forces acting on the airframe (X,Y, Z) result from the following
aerodynamic (body B, canard C and Magnus M) and gravity (G) components:
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The external moments acting on the airframe (Lf, La, M, N) contain additional

aerodynamic damping D and mechanical friction F components, whereas gravity
has no component:
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The friction moment Lf−a between the forward and aft parts is modeled using the

viscous friction coefficient Kv by

Lf−a = Kv (pa − pf) (7)

1 Subscripts ’f’ and ’a’ represent respectably ’forward’ and ’aft’ part-related constants or variables
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The control variables δp, δq, δr are virtual signals depending on the angular
position of the fuze Φf , the allocation matrix [T ]VR and the real canard deflection
angles δ1, δ2, δ3, δ4 satisfying:


δp
δq
δr


B′a

= [T (Φf)]B′aBf [T ]VR


δ1
δ2
δ3
δ4


Bf

=


1 0 0
0 cosΦf − sinΦf
0 sinΦf cosΦf



¼ ¼ −¼ −¼
0 ½ 0 ½
½ 0 ½ 0



δ1
δ2
δ3
δ4

 (8)

The terms CA,CYβ,CNα (with CYβ = −CNα)2 are the body, CNδ,CYδ (with
CYδ = CNδ) the canard and CYpα the Magnus force aerodynamic coefficients. The
terms Cmα,Cnβ (with Cnβ = −Cmα) are the body, Cmδ,Cnδ (with Cnδ = Cmδ) the
canard, Clp,Cmq,Cnr (with Cnr = Cmq) the damping and Cnpα the Magnus moment
aerodynamic coefficients. These are a non-linear function of the Mach numberM
and the Angle of Incidence (AoI) α′. The velocity of the airframe V , the Angle of
Attack (AoA) α, the Angle of Sideslip (AoS) β and AoI are visualized in Fig. 1 and
defined as [15]:
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2.2 Autopilot

The autopilot is designed as a Skid-To-Turn (STT) nose controlled configuration
using H∞ control techniques to achieve the performance, robustness and stability
requirements with at the same time least complexity. Therefore, the autopilot is di-
vided into a roll and a pitch/yaw channel [12].

The roll channel controls the angular position Φf of the decoupled fuze, which
is set to zero for the STT resulting in a "+" configuration (Fig.1). The initial roll
rate of the fuze due to the bearing friction has to be reduced to zero to achieve this
configuration from the initial state at the beginning of the controlled phase. The
input signals of the roll controller are the commanded roll position Φf,cmd, and the
measured roll position Φ̃f and roll rate p̃f of the fuze. The output signal is the virtual

2 This assumption is valid due to the rotational symmetry of the projectile body giving a direct
relation between the forces and moments coefficients of the longitudinal and lateral plane
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roll deflection angle δp of the canards. The internal structure of the roll channel
consists of a proportional controller for the angular rate and a P/PI regulator/servo
controller for the angular position.

The highly coupled pitch/yaw channel controls the specific accelerations of the
projectile in the vertical xB′ and lateral yB′ direction (Fig.1), by using two orthogonal
pairs of opposite canards for the pitch and yaw channel of the "+" configuration. The
input signals of the pitch/yaw controller are the measured normal ñz and lateral ñy ac-
celerations, the measured pitch q̃ and yaw r̃ rates, and the commanded normal nz,cmd
and lateral ny,cmd accelerations. The controller outputs are the pitch δq and yaw δr
virtual canard deflection angles. The internal structure of the pitch/yaw channel con-
sists of a feedforward controller for the commanded accelerations, a servo controller
for the difference between commanded and measured accelerations and a regulation
controller for the measured accelerations and angular rates (pitch/yaw) [12].

3 Zero-Effort-Miss

The Zero-Effort-Miss (ZEM) is a guidance technique using the difference between
the estimated no-action impact point (considering the current state of the projectile
as initial condition) and the mission target position to provide a guidance command.
The position offset is given by [14, 6]:

ZEMx = x(tgo) − xt (13a)
ZEMy = y(tgo) − yt (13b)

where ZEMx and ZEMy are the longitudinal and lateral offsets, and x(tgo) and y(tgo)
the estimated impact longitudinal and lateral position (as a function of the time to go
tgo) by using an Impact Point Prediction (IPP) method (Sec. 3.1). The mission target
is defined by the longitudinal xt and lateral yt coordinates.

The proposed leads to the general guidance acceleration command by the position
offset from Eq.13 as [6]:

ago = kg
[−ZEMx −ZEMy 0

]ᵀ (14)

Due to the fact, that a guided projectile is not able to produce thrust in most
cases, the acceleration in the longitudinal direction of the projectile is converted to
a normal acceleration. This is done by inverting the sign of the longitudinal offset
and writing it as normal component. In the case of a positive flight path angle γ
in combination with an initial launch angle Θ0 greater than 45° = π

4 , the direction
of the normal acceleration is already acting in the correct sense and needs no sign
inversion. This leads to the following expression [6]:

ago =


kg

[
0 −ZEMy −ZEMx

]ᵀ
, if Θ0 >

π
4 and γ > 0

kg

[
0 −ZEMy +ZEMx

]ᵀ
, otherwise

(15)
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The ZEM guidance gain kg is defined by the quotient of the navigation gain N
divided by the time to go squared [6].

kg =
N(

tgo
)2 (16)

Hence, the ZEM guidance gain is ∞ for the impact time (tgo → 0), it cannot be
used for the endgame. Either the guidance gain has to be bounded (e.g. considering
a maximum kg leading to a tolerated minimum time to go tgo) or another guidance
technique (e.g. Proportional Navigation (PN)) has to be considered for this terminal
phase.

The sum of the guidance acceleration command ago and the current specific
acceleration aeo (Sec. 3.2) acting on the projectile are divided by the gravity constant
g in order to receive a normalized acceleration command acmd for the autopilot:

acmd =
ago + aeo

g
(17)

3.1 Impact Point Prediction Methods

The existing impact point prediction (IPP) methods can be attributed to one ore more
of the following seven categories which are ordered with decreasing complexity in
the perspective of the model and the necessary initial states and parameters [5]:

• Six-Degrees-of-Freedom rigid body (6DoF)
• Modified-Linear Theory (MLT)
• Modified Point Mass (MPM)
• Full Point Mass (FPM)
• Simple Point Mass (SPM)
• Hybrid Point Mass (HPM)
• Vacuum Point Mass (VPM)

An overview of the initial states and obligatory parameters are given for each IPP
method (Tab. 1).

Themost complex IPP is a full Six-Degrees-of-Freedom rigid body (6DoF)model
which demands 12 initial states to describe all translational and angular positions and
velocities. Additional obligatory parameters are the environmental data as gravity
constant g, density ρ and speed of sound a, the properties of the projectile such as
caliber d, mass m, inertia tensor I and location of the center of gravity CG, and
finally the complete set of aerodynamic coefficients.

A closed-form solution and therefore simplification of the 6DoF model is the
Modified-Linear Theory (MLT) model. The same initial states as for the 6DoF
model are required but the model is in terms of parameters and equations to solve
less complex. It neglects the higher order aerodynamic coefficient terms and the
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Table 1 Summary of IPP required states and parameters [5]

IPP States Parameters

6DoF x, y, z, Φ, Θ, Ψ,
ũ, ṽ, w̃, p̃, q̃, r̃

g, ρ, a,m, d, I, CG,
CX0,CXα2,CNα,CYpα,Cmα,Cmq,Cnpα,Clp

MLT x′, y′, z′, Φ′, Θ′, Ψ′,
ũ′, ṽ′, w̃′, p̃′, q̃′, r̃′ g, ρ, a,m, d, Ixx, Iyy, CG,CX0,CNα,Cmα,Cmq,Cnpα,Clp

MPM x, y, z, Ûx, Ûy, Ûz, ÛΦ g, ρ, a,m, d, Ixx, CG,CX0,CXα2,CNα,CYpα,Cmα,Clp
FPM x, y, z, Ûx, Ûy, Ûz g, ρ, a,m, d,CX0
SPM x, y, z, Ûx, Ûy, Ûz g, ρ, a,m, d,CX0
HPM x, y, z, Ûx, Ûy, Ûz g, ρ, a,m, d,CX0
VPM x, y, z, Ûx, Ûy, Ûz g

Magnus force coefficient, and at the same time simplifies the inertia tensor for
symmetric projectiles by reducing it to an axial and a transverse component.

The Modified Point Mass (MPM) model represents the projectile as a point mass
with an additional term for the spin rate. Hereby, the spin rate is compulsory to
consider the drift in the crossrange direction due to the yaw of repose (Sec. 3.2).
The initial states of the MPM model are the translational positions and velocities as
well as the initial spin rate. The required parameters are the same as for the MLT
model except for the additional non-linearity term of the axial force coefficientCXα2.
Additionally the transverse moment of inertia Iyy is neglected.

The Full PointMass (FPM), Simple PointMass (SPM), Hybrid PointMass (HPM)
and Vacuum Point Mass (VPM) models express the motion of the projectile as a
point mass. These models all have the translational positions and velocities as initial
states. FPM, SPM and HPM require as parameters the gravity constant g, density ρ
and speed of sound a, the properties of the projectile such as caliber d, mass m and
the zero incidence axial force coefficient CX0. For the reason that the VPM describes
the atmosphere as a vacuum only gravity is acting on the projectile which reduces
the parameters to the gravity constant g for that model. The differences between
FPM, SPM and HPM lie in the modeling of the forces acting on the projectile. For
the FPM the density ρ and zero incidence axial force coefficient CX0 are updated
during flight. The SPM uses instead the parameters at gun launch for the entire
trajectory computation. The HPM is based on vacuum-type equations of motion but
additionally includes an updated drag estimate [5].

3.2 Modified Point Mass Model with Dual Regime Algorithm

TheModified Point Mass (MPM) model with dual regime algorithm [8, 6] simulates
the translational motion of the projectile considering the gravity, drag, lift and
Magnus forces which are acting on it. It is called dual regime algorithm because
it uses different coefficients for supersonic and subsonic flight and treats them as
separated steps. The closed-form solution is evaluated twice (for supersonic and
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subsonic regime separately) if the projectile is initially supersonic and only once if
subsonic, assuming that it is not turning supersonic again for the remaining trajectory.
For the supersonic case, the results of the closed-form solution are used as initial
states for the subsonic regime.

The MPMmodel uses drag, lift, Magnus and gravity force to retrieve the acceler-
ations affecting the projectile trajectory. The drag force acts in the opposite direction
of the projectile velocity

fD = −q̄SCD
v

‖v‖ (18)

The yaw of repose vector αr is used for determining the total incidence of the
projectile and is perpendicular to the plane formed by the gravity and velocity vectors.

αr =
Ixxp

q̄SdCmα

(
g × v

‖v‖

)
(19)

The lift force is then parallel to the yaw of repose and therefore

fL = q̄SCLααr (20)

The Magnus force is perpendicular to the plane formed by the velocity and yaw
of repose vectors

fM = q̄SCYpα
pd

2‖v‖

(
v

‖v‖ × αr

)
(21)

Using Eqs. 18 to 21 the point mass equation is written as [6]:

m Ûv = fD + mg + fL + fM (22)

The point mass Eq. 22 is arranged in a Line-of-Sight (LoS) CS to the target which
has its origin in the cannon, with its x-axis and y-axis in the horizontal plane, re-
quiring no additional transformations. The x-axis of the CS is parallel to the cannon
muzzle azimuth and in downrange direction, the z-axis down and the y-axis to the
right [6].

In order to reduce the workload of the autopilot, the specific acceleration by the
aerodynamic forces of the projectile are needed and approximated by the following
equation

aeo =
q̄S

(
−CD

v
‖v ‖ + CLααr + CYpα

pd
2‖v ‖

(
v
‖v ‖ × αr

))
m

(23)
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3.3 Modified Point Mass Model with Variable Spin Rate and
Parameters

Trajectory simulations using the MPM dual regime algorithm (Sec. 3.2) did not pro-
vide an acceptable accuracy for the impact location (Sec. 4.1) because of a predicted
offset of more than 40 m downrange and 20 m crossrange for the nominal trajectory
and a guidance start at t = 60 s. Therefore the roots of inaccuracy of the algorithm
are identified and improvements developed.

The MPM dual regime algorithm uses the following assumptions:

• Constant coefficients CD,CLα,CYpα and Cmα
• Constant spin rate p for the Magnus force
• Constant angle of repose αr
• Simplifications for the integration method and equations

3.3.1 Constant Coefficients

The assumption that the coefficients of the projectile are constant (for each regime)
throughout the flight is problematic when looking at the variation of the coefficients
between the guidance start t = 60 s and impact (Fig. 2). This gets even more critical
if the projectile turns supersonic again after being subsonic or if it is operated over
a wide range of possible Mach numbers M. The solution proposed is to update
the aerodynamic coefficients for each flight point of the remaining trajectory with
respect to the Mach numberM and Angle of Attack (AoA) α and Angle of Sideslip
(AoS) β using the nominal projectile aerodynamic coefficients.

3.3.2 Constant Spin Rate

The Magnus force is linear to the Magnus force coefficient CYpα and the spin rate
p. The MPM Dual Regime algorithm considers the spin rate to be constant during
the remaining flight time, which is not the case because of the roll damping moment
of the body. Therefore, the variation in spin rate has to be taken into account for
the computation of the Magnus force, especially when the remaining flight time for
the IPP is increased. Below the spin rate of the nominal ballistic trajectory is shown
between guidance start t = 60 s and impact (Fig. 3).
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Fig. 2 Aerodynamic coefficients along a nominal ballistic trajectory (Sec. 4.1)
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Fig. 3 Spin rate of nominal ballistic trajectory (Sec. 4.1)
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3.3.3 Constant Yaw of Repose

The yaw of repose vector αr is in the MPM Dual Regime algorithm only considered
as a constant vector. For the α-plane this simplifications seem to be valid for the
nominal ballistic trajectory and a guidance start at t = 60 s but the β-plane varies
a lot in the same time and cannot therefore be considered as constant (Fig. 4). The
same problem arises for the α-plane of a non-nominal trajectory where the projectile
achieves higher incidences than in the nominal one. To improve the accuracy of the
impact prediction, all those variations have to be accounted for by updating the yaw
of repose vector αr during each flight point of the remaining trajectory using Eq. 19.
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Fig. 4 Yaw of repose components of nominal ballistic trajectory (Sec. 4.1)

3.3.4 Simplifications for the Integration Method and Equations

The MPM Dual Regime impact location prediction algorithm uses one single time
interval for the integration, by supposing a constant acceleration during this inter-
val. Furthermore, the x- and z-axis dynamics are modeled by time-invariant linear
differential equations. The solution proposed in this work to the problem of having
constant signals (such as the accelerations in this case) during the integration period,
is to split the integration into multiple (and thus smaller) time intervals. In this way
the aforementioned signals are obtained in a more accurate and smooth way.
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3.3.5 Algorithm for Improved Accuracy of Impact Point Prediction

For the proposed impact location prediction algorithm, the forces acting on the
projectile are computed using Eqs. 18 to 22. The accelerations of the projectile
derived by these forces are integrated twice (using Euler integration) to obtain the
velocities and positions using:

v(tn+1) = Ûv(tn)∆t + v(tn) (24a)

x(tn+1) = 1
2
Ûv(tn)∆t2 + v(tn)∆t + x(tn) (24b)

where the constant time interval for the integration is ∆t.

The updated positions and velocities are then the initial inputs for the following
time interval. After each integration step the aerodynamic coefficients are updated
using the nominal data, the standard atmosphere and gravity model. A simplified
gravity model has been used for this study using a linear fit of the WGS 843 model

g = g0 + g1 · h (25)

where: g0 = y-intercept (9.808 410 2 m s−2)
g1 = gradient (−3.070 952 3 × 10−6 s−2)

The above algorithm is repeated until the projectile passes the target altitude
(criteria to determine the impact), providing the time to go tgo and the lateral and
longitudinal impact point for calculating the ZEM offsets by Eq. 13.

4 Simulations and Results

This chapter contains the trajectory simulations which have been performed to com-
pare the performance of three different guidance methods. These are Proportional
Navigation (PN) and Zero-Effort-Miss (ZEM), where the later is implemented with
two distinct impact prediction methods MPM1 (Sec. 3.2) and MPM2 (Sec. 3.3).
First, the guidance is evaluated in the nominal trajectory, thereafter, the guidance
is used in Monte-Carlo trajectory simulations applying uncertainties on various ini-
tial conditions, aerodynamic coefficients and parameters. All simulations consider
perfect navigation and the maximum actuator deflection is set to ±30°.

3 World Geodetic System (WGS), with the linear fit performed at the cannon position
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4.1 Nominal Trajectory

The nominal trajectory of a projectile is defined as a ballistic flight impacting in
the target location without uncertainties. The initial conditions are shown in Tab. 2,
where the initial spin rate p0 is obtained by a direct relation of the twist of the barrel
and the initial velocity V0. The target is located 24 km downrange from the cannon
for the considered scenario.

Table 2 Initial conditions of nominal trajectory

State Value Unit

V0 940 m s−1

p0 305 Hz
Θ0 42 °
Ψ0 0 °

To compare PN (baseline), and the two ZEM guidance techniques the pitch-yaw
guidance and control is initiated at 60 s flight time resulting in an approximated time
to go tgo of less than 21 s. At that flight point, the Line-of-Sight (LoS) rate is small
enough to initiate the PN guidance, without exceeding an actuator deflection of ±8°
for the nominal trajectory.

The sampling time ∆t (Eq. 24) used for the MPM2 IPP (Sec. 3.3) is chosen by
evaluating the obtained accuracy in comparison with the necessary computational
effort to calculate the estimated impact location. It can be directly (Fig. 5) seen that
the sampling time has a much larger impact on the estimation in downrange direction
and is therefore considered as critical. The accuracy improves with a higher sampling
rate but converges at a sampling time around 100 Hz = 0.01 s. The computational
effort increases proportionally to the sample rate. A trade-off between accuracy and
computational effort leads to a sampling time of 25 Hz = 0.04 s indicated by the red
dotted line. Comparing the two evaluated starting points for the IPP (t = 23 s and
60 s) shows, that the sampling rate of 25Hz delivers acceptable results independently
of the selected starting point for the MPM2 IPP.

Comparing the MPM1 and MPM2 IPP trajectory results (Fig. 6), a large reduc-
tion in the predicted offsets, ideally zero, of the nominal trajectory is observed.
This reduced ZEM offsets lead directly to much lower commanded accelerations
of the ZEM guidance with MPM2 IPP and the autopilot requires smaller actuator
deflections. In relation to the baseline PN guidance both ZEM guidance methods
have higher control performance reserves by demanding lower actuator deflections.
The ZEM guidance with MPM2 IPP is close to the ideal solution of zero actuator
demand for the nominal trajectory.

The ZEM commands from MPM2 IPP (Sec. 3.3) are comparable to the accel-
erations acting on the projectile in the nominal ballistic trajectory (Fig. 6b). The
initial perturbations at the beginning are caused mainly by the regulation loop of
the pitch-yaw autopilot which has to adapt to the given flight instance displacing the
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Fig. 5 Influence of MPM2 IPP sampling time ∆t on accuracy and CPU time at t = 23 s and 60 s.
Vertical dotted red line indicates 25 Hz = 0.04 s
Machine: Intel Xeon CPU E5-1607 v2 @3.00GHz with 4 physical cores and 16GB RAM

impact position and forcing the ZEM guidance to command an acceleration in the
opposite direction. Towards the end of the trajectory, the ZEM guidance suffers from
the time to go singularity, which is caused by the nominator of the navigation gain
kg (Eq. 16). Therefore, a different guidance method e.g. modified PN should be used
for the end game task. For this study, the endgame is performed by PN guidance if
the distance to the target is less than 50 m.
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4.2 Monte-Carlo Trajectories

Monte-Carlo methods are used for trajectory simulations to study the influence of
certain parameters by using repeated random sampling to obtain the numerical re-
sults. Here, it is used to evaluate the influence of uncertainties (Tab. 3) on the initial
states (velocity V0, elevation Θ0, azimuth Ψ0), the aerodynamic coefficients (axial
force CX, normal force slope CNα) and the environmental parameters (pressure P,
temperature T , longitudinal wind uw, lateral wind vw). To obtain a sample of trajec-
tories which is large enough to provide representative results, 2000 individual cases
are simulated; each one using a set of normally distributed random uncertainties.
The nominal trajectory (Sec. 4.1) is considered as the reference for these simulations.

Table 3 Uncertainties used for Monte-Carlo Trajectories

Parameter σ Unit

V0 5 m s−1

Θ0 1.5 °
Ψ0 2.5 °
CX 1 %
CNα 3 %
P 0.4 %
T 0.4 %
uw 3.5 m s−1

vw 3.5 m s−1

The simulation results obtained concern the relative impact distributions (Fig. 7),
the miss distances (Fig. 8a) and finally the maximum necessary actuator deflections
(Fig. 8b). The above results are compared for three guidance strategies: the first
is PN-based whereas the second and third ones are ZEM MPM2 IPP-based. The
difference between the last two ones is only the guidance starting time (t = 60 s and
t = 23 s respectively). In fact, given that the ZEMMPM2 IPP-based method permits
an earlier start of the guidance (contrary to the PN-based) since no approximately LoS
constraint is required, there is a clear benefit from this strategy. For completeness,
the ballistic trajectories are also illustrated together with the guided ones.

Referring to Fig. 7, the total ballistic dispersion (top left) that needs to be corrected
from the guidance was found to be up to ±500 m in crossrange and ±1000 mm in
downrange based on the considered uncertainties of Tab. 3. The PN-based method
reduces the dispersion to 2.264 m of CEP4 and the ZEMMPM2 IPP-based to almost
zero. However, it must be noted that in the latter strategy, there is a big improvement
concerning the 1σ, 2σ and 3σ. Referring to Fig. 8, the maximum miss distance
and actuator deflection are also greatly reduced.

4 For information, the Circular Error Probable (CEP) is here defined as the maximummiss distance
of the first 50 % of all trajectories when ordered from low to high miss distances. Same definition
applies for 1σ = 68.2 %, 2σ = 95.4 % and 3σ = 99.7 %.
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Fig. 7 Relative impact distributions at a range of 24 km. ZEM uses MPM2 IPP

Table 4 Impact distributions

Guidance Method CEP [m] 1σ [m] 2σ [m] 3σ[m]

Ballistic 268.620 348.572 629.209 886.122
PN (t = 60 s) 2.264 73.769 483.610 685.482
ZEM MPM2 IPP (t = 60 s) 0.077 66.055 479.505 682.494
ZEM MPM2 IPP (t = 23 s) 0.007 0.011 0.022 0.056
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5 Conclusions and Future Work

This paper presents an Impact Point Prediction (IPP) method for a 155mm, canard-
guided, spin-stablized projectile. This IPP method is used for a Zero-Effort-Miss
(ZEM) guidance to improve the ballistic impact distribution to minimize the miss
distance to the target and several existing categories of IPP methods are discussed.
One existing Modified Point Mass (MPM1) model is analyzed to improve the ac-
curacy, and from that knowledge a second MPM2 model is developed alleviating
the shortcomings of the previous method. Concerning the nominal trajectory, the
latter model is compared against Proportional Navigation (PN) guidance and a ZEM
guidance (using the MPM1model). The results show a considerable reduction in the
prediction error, and a noticeable decrease of the guidance acceleration command
and required actuator control deflection. Concerning the non-nominal trajectories,
Monte-Carlo simulationswith uncertainties in the launch condition, aerodynamic co-
efficients and environmental parameters are performed, demonstrating an important
improvement on the guidance performance of ZEM with MPM2 IPP.

Future work will focus on the robustness of the IPP when using imperfect naviga-
tion data, additional uncertainties (e.g. more aerodynamic coefficients or projectile
constants) and the induced jump in the ZEM guidance command due to the sign
change resulting from high elevation angles.
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