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Abstract A passivity-based angular rate feedback controller is proposed for a fin-
controlled missile system. To augment the stability of the flight systems, rate feed-
back loop is designed as the inner-loop system. In the flight envelope, aerodynamics
dominantly affect the flight dynamics, some of which may be taken advantage of the
flight control system. In this study, passive characteristics in the flight dynamics are
investigated, and the characteristics are exploited in controller design. The similar-
ities between the classical stability augmented system and the proposed controller
are analyzed. Numerical simulation is performed to demonstrate the effectiveness
of the proposed controller.

1 Introduction

Passivity-based control (PBC), which stabilizes the system using dissipative and
passive characteristics, has been studied for decades. Because the PBC has ad-
vantages in perspective of energy-based control([1]), the PBC usually uses Euler-
Lagrange dynamics and has been widely used in the field of spacecraft([2, 3, 4])
and robot manipulator([5, 6]). However, few studies have been done for atmospheric
flight control systems.

There have been lots of studies for the design of the angular rate controller for the
flight control system. Because the translational motion and the rotational motion are
strongly coupled in the flight control system, the primary objective of the rate con-
troller is to improve the stability of the rotational motion of the system. Therefore,
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stability augmentation system (SAS) has been widely designed to provide the stabil-
ity of the system in the flight control system based on the classical control method .
Using nonlinear control methodologies, attitude control problem of the missile has
been studied utilizing feedback-linearization([7]), backstepping([8]), and sliding-
mode control([9]).

To design a PBC, in general, the governing equation was derived based on Euler-
Lagrange formulation. Because the flight dynamics is usually described by Newton-
Euler formulation, the physical passivity in the dynamics cannot be easily observed.
Lee and Kim designed an attitude autopilot using PBC for a fin-controlled missile
[10], where the governing equation was derived using Euler-Lagrange formulation.

In this study, a rate-feedback controller for fin-controlled aerodynamic missiles
is proposed using the passivity theory. To design the controller, passive characteris-
tics in the missile dynamics is investigated. A rate-feedback controller is designed
for the longitudinal motion, and the designed— pitch-rate controller is analyzed by
comparing the structure with a classical SAS. Based on the analysis, the rate feed-
back controller is also designed for roll-pitch-yaw motion. Numerical simulation
is performed by comparing the proposed controller with the feedback-linearization
control scheme. By the proposed controller using PBC, damping property and the
stability of the system can be improved.

This paper is organized as follows. In section 2, the brief review of the passivity
control theory is provided. In section 3, the passive characteristics are investigated,
and the controller design and the similarity with the classical SAS are discussed. In
section 4, numerical simulation is performed to demonstrate the effectiveness of the
proposed controller, and conclusion is presented in section 5.

2 Preliminaries

In this section, the preliminary of passivity is briefly reviewed. Let us consider a
p-input-p-output system.

ẋ = f (x)+g(u)
y = h(x) (1)

For the system (1), the following definitions are introduced[[11]].

Definition 1. The system (1) is said to be passive, if there exists a continuously
differentiable positive semidefinite function V (x) (called storage function) such that

uT y≥ V̇ (x)

In addition, it is

• lossless if uT y = V̇
• output strictly passive if uT y≥ V̇ + yT ρ(y) and yT ρ(y)> 0 ∀y 6= 0.
• strictly passive if uT y≥ V̇ +ψ(x) for some positive definite function ψ .

In all cases, the inequality should hold for all (x,u).
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Definition 2. The system (1) is said to be zero-state observable, if no solution of
ẋ = f (x,0) can stay identically in S = {s ∈ Rn|h(x,0) = 0} other than the trivial
solution x(t) = 0.

Using the definitions of passivity and zero-state observability, the following theorem
addresses the stability of the passivity based control.

Theorem 1. Consider the system (1). If the following conditions hold
(C1) Eq. (1) is passive with a radially unbounded positive definite storage func-

tion
(C2) Zero-state observable,
then, the origin x = 0 can be globally stabilized by u = −ϕ(y), yT ϕ(y) > 0 for

all y 6= 0.

Theorem 1 is satisfied if there exists radially unbounded storage function V such
that ∂V

∂x f (x) ≤ 0 for all x, and y = [ ∂V
∂x g(x)]T , which is known as nonlinear version

of KYP(Kalman-Yacubovitch-Popov) lemma.
To investigate the passivity of linear system, let us consider a scalar transfer

function as follows.

Definition 3. A proper rational transfer function G(s) is positive real, if

• poles of all elements of G(s) are in the left-half plane (LHP).
• for all real w for which jw is not a pole of any element of G(s), the function

2Re[G( jw)] is positive semidifinite.
• any pure imaginary pole jw of any element of G(s) is a simple pole and the

residue lims→ jw(s− jw)G(s) is positive semidefinite Hermitian.

It is strictly positive real (SPR), if G(s− ε) is positive real.

For example, G(s) = 1/s is PR because it has no poles in Re(s)> 0 and has a simple
pole at s = 0 whose residue is 1. G(s) = 1/(s+a) , a > 0 is SPR because

pole(G(s)) =−a < 0

Re(G( jw)) =
a

w2 +a2 > 0

lim
w→∞

w2Re(G( jw)) = a > 0

(2)

Using the SPR, the following lemma gives the relation of SPR with the passivity of
the system.

Lemma 1. The linear time-invariant system ẋ = Ax+Bu, y =Cx+Du with G(s) =
C(sI−A)−1B+D is strictly passive if G(s) is SPR.

On the other hand, if the open-loop system is not passive, a feedback can be used
to achieve passivity which is known as feedback passivation.

Definition 4. The system Eq. (1) is called feedback passive, if there exists a follow-
ing invertible feedback transformation.
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u = α(η , η̇)+β (η , η̇)v (3)

where α represents a feed-forward function, and v is a virtual control input. Then,
the system can be converted as

ẋ = f (x)+g(x)α(x)+g(x)β (x)v

y = h(x)
(4)

Here, α and β are chosen to satisfy

∂V
∂x

( f (x)+g(x)α(x))≤ 0

y =
[

∂V
∂x

g(x)β (x)
]T (5)

Therefore, the system can be passive from v to y.

Example 1. Consider a dynamic system.

ẋ = x2−2x+u, (6)

and y = x. The system is not strictly passive by showing that V (x) = x2. Using the
feedback-passivation, the passivity-based control law can be generated as

uPBC =−x2 + v (7)

From Theorem 1, the feedback system is passive from y to v as follows.

V̇ (x) =−2x2 + xv < xv = xϕ(x) (8)

By choosing ϕ(x) as −kx, the system is strictly passive and asymptotically stable.
On the other hand, the feedback linearzation control law can also be obtained as

uFL =−x2 +2x+ v (9)

which yields
V̇ (x) = xv = xϕ(x) (10)

Difference between uPBC and uFL is that the passivity control input exploits dissi-
pative property in its dynamics. Figure 1 shows the simulation results for the feed-
back system of example 1. Compared to feedback linearzation, the output by the
passivity-based controller is stabilized fast by exploiting inherent dynamic charac-
teristics.



Passivity-based Angular Rate Feedback Controller for Fin-Controlled Missiles 5

(a) output

(b) Control input

Fig. 1 Simulation results of example 1

3 Controller Design

In this section, the design of rate feedback controller is proposed for a fin-controlled
missile. First, the pitch rate controller is designed considering the longitudinal mo-
tion of the missile, and the equivalence between the classical SAS is analyzed. Then,
the angular rate controller in three-axis is designed in Sec. 3.2.

3.1 Pitch rate controller

Consider a short-period longitudinal motion of the missile which can be described
as
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α̇ =
QS
mV

(
Cz0(V,α)+Czδ

δ
)
+q

q̇ =
QSd

Iy

(
Cm0(V,α)+Cmq

d
2V

q+Cmδ
δ

)
θ̇ = q

(11)

where (Q,V ) are the dynamic pressure and the speed of the missile, respectively,
(S,d) are the reference area and the characteristic length of the missile, respectively,
and (m, Iy) indicate the mass and the moment of inertia of the missile. To design a
pitch rate controller, the output is introduced as y = q. In pitch rate dynamics, the
aerodynamic moments have the following properties.

• M0 =
QSd

Iy
Cm0(V,α) has a nonlinear function with respect to V and α .

• Mq =
QSd

Iy
Cmq has positive aerodynamic damping, i.e., Mq < 0.

• Mδ = QSd
Iy

Cmδ
is a dimensional moment derivative of control surface, and Mδ > 0.

Using the feedback passivation, the rate-feedback controller based on the passivity-
based control is proposed as

uPBC =
1

Mδ

(−M0 + v) (12)

To analyze the stability, let us introduce the storage function V = 1
2 y2. Then,

V̇ = q(M0 +Mqq+Mδ δ ) = Mqq2 +qv (13)

Since Mq < 0, the system is strictly passive. By selecting v = ϕ(q) = −Kq, the
controlled system is stabilized as

V̇ ≤−Ky2 (14)

3.1.1 Equivalence between the classical stability augmentation system (SAS)

In this section, the connectivity between the passivity-based pitch rate controller
and the classical SAS controller is analyzed. First, the classical SAS controller is
designed using the linearized system. The dynamic equation (11) can be linearized
as  ˙∆α

∆̇q
∆̇θ

=

 Z̄α 1 0
M̄α M̄q 0
0 1 0

∆α

∆q
∆θ

+
 0

M̄δ

0

∆δ (15)

where ∆α =α−α0, ∆q= q−q0, and ∆θ = θ−θ0 are the perturbed states from the
trim condition α0, q0 = 0, θ0. Using the linearized system, transfer function ∆q/∆δ

is obtained as
∆q(s)
∆δ (s)

=
M̄δ (s− Z̄α)

s2− (Z̄α + M̄q)s+(Z̄α M̄q− M̄α)
(16)
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As shown in Fig. 2, the classical SAS controller is designed by the pitch rate feed

Fig. 2 Classical rate feedback loop

back.. The closed-loop transfer function can be expressed as

q(s)
qc(s)

=
M̄δ (s− Z̄α)

s2− (Z̄α + M̄q− kM̄δ )s+(Z̄α M̄q− M̄α − kM̄δ Z̄α)
(17)

where Z̄α < 0 and M̄α < 0 for statically stable vehicle. The closed-loop pole of the
transfer function always lies in the left-half plane (LHP). Now, let us investigate the
similarity between the classical control input and the passivity controller. For the
trim condition, trimmed control surface δ0 has

δ0 =−
1

M̄δ

M̄0(V0,α0) (18)

Now, the transfer function ∆q/∆δ of the system is obtained for the output y = q as

∆q(s)
∆δ (s)

=
M̄δ (s+ z)
s2 +as+b

(19)

where
z =−Z̄α > 0
a =−(Z̄α + M̄q)> z > 0
b = (Z̄α M̄q− M̄α)> 0

(20)

Note that the transfer function is SPR, which means that the perturbed system is
strictly passive by Lemma 1. Therefore, the system can be asymptotically stabilized
by any negative feedback ∆δ =−kp. The perturbed system is made by the trimmed
control input δ0, and therefore the actual control input u for the classical SAS can
be expressed as

u = δ0 +∆δ =− 1
M̄δ

M̄0(V0,α0)− kp (21)

Comparing with the passivity-based pitch rate controller, the classical SAS and the
PBC have common structure as

u = A−Bq (22)



8 Seokwon Lee, and Youdan Kim

In the classical SAS, A and B are expressed as

A =− 1
M̄δ

M̄0(V0,α0), B = k (23)

Likewise, in the PBC controller, A and B are

A =−M0

Mδ

, B = K/Mδ (24)

Note that M̄δ , M̄0 are trimmed coefficients of Mδ and M0, respectively. Considering
K = Mδ k, it can be stated that the passivity-based rate controller is the extended
version of the classical SAS.

3.2 Rate-feedback Controller for roll-pitch-yaw axis

In this section, a rate-feedback controller is designed for roll-pitch-yaw integrated
system using the passive characteristics in rotational motion. The rotational motion
is described by Newton-Euler formulation as ([9])

Jω̇ +ω× (Jω) = M0 +Mω ω +Muu (25)

where ω = [pqr]T denotes the the angular rate vector, u is the control vector, and J
is the moment of inertia matrix, which can be expressed as

J =

 Ixx 0 0
0 Iyy 0
0 0 Izz

 (26)

where (Ixx, Iyy, Izz) represent the moments of inertia in the principal axis (x,y,z axis).
The aerodynamic moments (M0,Mω ,Mu) are modeled as

M0 = QSd

 Cl0
Cm0
Cn0

 , Mq =
QSd2

2V

Clp 0 0
0 Cmq 0
0 0 Cnr


Mu = QSd

Clδ r Clδ p Clδy

0 Cmδ p 0
0 0 Cnδy

 (27)

where u= [δr δp δy]
T is the fin-deflection vector defined as control input, (Cl0 ,Cm0 ,Cn0)

are the biased aerodynamic moment coefficients, (Clp ,Cmq ,Cnr) are the aerodynamic
damping coefficients, and (Clδr

,Clδp
,Clδy

,Cmδp
,Cnδr

) are the control derivatives of
fin-deflections.

In Eq. (25), the following condition satisfies
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ω
T (ω× (Jω)) = 0 (28)

Mω < 0 (29)

Using the dynamic characteristics, the dynamic equation can be converted by intro-
ducing the feed-forward function α and β as

α(η , η̇) = Mu
−1 (−M0)

β (η , η̇) = Mu
−1 (30)

By substituting Eq.(3) and Eq. (30) into Eq. (25), we have

Jω̇ +ω× (Jω) = Mω ω + v (31)

To show the passivity of the system, let us consider the following storage function.

Vstorage =
1
2

ω
T Jω (32)

Differentiating the storage function with respect to time gives

V̇storage = ω
T (Jω̇)

= ω
T (−ω× (Jω)+Mω ω + v)

≤ yT v

(33)

which yields

Vstorage−Vstorage(0)≤
∫ t

0
y(s)T u(s)ds (34)

Therefore, the system is strictly passive. Considering ϕ(y) = −ky = −kω , the sys-
tem can be stabilized.

Now, let us design a rate-feedback controller based on passivity-based control.
To track a desired angular rate ωd , the error dynamics e = ω−ωd can be rewritten
as

Jė+ e× (Jω) =−Jω̇d−ωd× (Jω)+M0 +Mω ω +Muu (35)

Feedback control law is considered to stabilize the error dynamics as

u = α(ω̇d ,ωd ,ω, ω̇)+β (ω, ω̇)v (36)

In Eq. (36), α , β , and v can be designed as follows,

α(ω̇d ,ωd ,ω, ω̇) =−Mu
−1M0

β (ω, ω̇) = Mu
−1

v = Jω̇d +ωd× (Jω)−Mω ωd−Kpė

(37)

where Kp is a feedback gain. Using the feedback passivation, the error dynamics
can be rearranged as
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Jė+ e× (Jω) = Mω e−Kpe (38)

To analyze the stability of the passivity-based control system, let us consider a fol-
lowing storage function.

Vstorage =
1
2

eT Je (39)

Time derivative of (39) gives

V̇storage = eT Jė = eT (−e× (Jω)+Mω e−Kpe) (40)

Since aT (a×b) = 0 and Mω < 0, Eq. (40) can be rewritten as

V̇storage = eT Mω e− eT Kpe <−eT kpe (41)

Therefore, the closed-loop system is strictly passive. By taking y= e and v2 =−Kde,
Eq. (41) is stabilized by Theorem 1.

4 Numerical Simulation

To demonstrate the performance of the proposed angular rate controller, numer-
ical simulation is conducted. Initial conditions of the missile are summarized in
Table 1. To compare the tracking performance of the proposed controller, feedback-
linearization controller is designed for the same simulation scenario. The control
law can be expressed as

uFL = Mu
−1 (−M0 + e× (Jω)+Jω̇d−Mω ω−Kpe) (42)

Note that the gain Kp is selected as 5 in both the proposed controller and feedback
linearization controller.

Table 1 Initial Condition

Parameter Symbol Units
Initial Position (x0,y0,z0)=(0,0,10) (m)
Initial Attitudes (φ0,θ0,ψ0)=(0,45,0) (deg)
Initial Angular rates (p0,q0,r0)=(0,5,0) (deg/s)

Boost-phase Glide-phase
Speed(Initial, range) V ∈

[
V0,Vf

]
V (t0) =Vf (m/s)

Inertia matrices J ∈
(
J0,J f

)
J = J f

Figures 3 and 4 show the simulation results. In the simulation, both controllers
track the desired command. However, the proposed passivity-based controller shows
small tracking errors in pitch and yaw axes. Also, the passivity-based controller
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Fig. 3 Time histories of angular rates (p,q,r)

Fig. 4 Time histories of fin deflections (δr,δp,δy)
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converge to the command faster than the feedback linearization controller, which
improves damping property.

To show the robustness of the proposed controller, Monte-Carlo simulation is
performed under various uncertainties. For the uncertainty, the aerodynamic coeffi-
cient considering bias error is modeled as

C(·) =C(·),n (1+µd) (43)

where C(·),n is the nominal aerodynamic coefficient obtained from the aerodynamic
data, µd is the bias uncertainty. In the siumlation, 100 cases of aerodynamic uncer-
tainties, µd,i ∈ [−0.2,0.2], i = 1, · · · ,100, are considered. To compare the perfor-
mance, two performance indices are considered as

J1 =
1
T

∫ T

0
|p− pc|+ |q−qc|+ |r− rc|dt (44)

J2 =
1
T

∫ T

0
|δr|+ |δp|+ |δy|dt (45)

where J1 and J2 represent an average cumulative error and fuel consumption, re-
spectively.

Figure 5 shows the Monte-Carlo simulation result. Under the various uncertain-
ties, both controllers show response deviations from the nominal cases. However,
the proposed controller has relatively small deviation and shows consistent tracking
performance compared to the feedback linearization controller. Moreover, the worst
case of the pitch rate response shows better behavior than the result of the nom-
inal feedback linearization controller as shown in Fig. 5. Table 2 summarizes the
result of the performance indices. It is shown that the maximum cumulative error of
the proposed method does not exceed the mean value of the feedback linearization,
and the standard deviation is much smaller. From the result, the passivity-based rate
feedback controller improves the stability of the system.

5 Conclusion

In this study, a passivity-based rate feedback controller was proposed for an atmo-
spheric flight control system. In the rotational dynamics, the dissipative moment
could improve its stability, which was demonstrated based on the passivity control
theory. The proposed angular rate controller was designed by utilizing the dissipa-
tive moment. It was also shown that the structure of the passivity based rate feedback
controller was similar to that of the classical stability augmentation system. Simula-
tion result demonstrated that the proposed passivity-based controller improved the
stability and showed robust performance.
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Fig. 5 Time histories of angular rates (p,q,r) (Monte-Carlo Simulation, Passivity Based Con-
troller)

Table 2 Simulation results : Monte-Carlo Simulation

Cumulative error Fuel Consumption
mean std max mean std max

Passivity-based Controller 0.0117 0.0014 0.0144 0.0514 0.0034 0.0574
Feedback Linearization 0.0179 0.0021 0.0217 0.0495 0.0030 0.0548
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