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Abstract Improved image navigation and registration algorithms are presented based on
Kalman filter to allow near real-time delivery operation of level 1B data blocks and
LRIT/HRIT subimages (instead of a whole image) to users. Kalman filter estimates
attitude correction angles, orbit position relative to ideal geostationary orbit, and internal
misalignments of imagers with single mirror or two mirrors. Kalman filter measurements
consist of landmarks extracted from the imaging instrument level 1A data blocks, orbit
maneuver delta V or coarse orbit from flight dynamics, and spacecraft inertial angular
rate telemetry inserted in the imager wideband data. The state vector most significant
improvement represents the effect of scan mirror axes orthogonality misalignment angle
due to thermal variation and measurement errors. This improvement is shown to be in the
north-south direction and equals to the orthogonality misalignment angle
multiplied by the tangent of the east-west scan angle. The improved image navigation and
registration algorithms are also applicable to systems with star and landmark
measurements and systems with star only measurements.

Nomenclature
ABI : advanced baseline imager
ACF : attitude control frame
C : cosine

COMS : communication, ocean, and meteorological satellite
ECLF : earth centered local frame
EW : east-west
FDS : flight dynamics system
FGF : fixed grid frame
FPM : focal plane module
GOES : geostationary operational environmental satellite
GPS : global positioning system
HRIT : high rate information transmission
IIRF : instrument internal reference frame
IMC : image motion compensation
IMU : inertial measurement unit
INR : image navigation and registration
IOT : in orbit test
KF : Kalman filter
L  : geocentric latitude
LOS : line of sight
LRIT : low rate information transmission
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LRF  : LOS reference frame

NS : north-south
(6] : orthogonality
OD  : orbit determination
P : landmark or point on earth
ParSEC : parametric systematic error correction
R : radius
S : sine
SV : state vector
uTC : coordinated universal time
A% : velocity
0 : pitch angle
A : longitude
[0} : roll angle
U} : yaw angle
Subscripts
att : attitude
C : combined
corr  : correction
eq : equator
m : misalignment or number of misalignments
0 : initial
S . spacecraft

1 Introduction

The purpose of this paper is to improve the generalized image navigation algorithm
provided in Ref.[1] based on the improved misalignment equations provided in Ref. [2].

The term Image Navigation and Registration and the INR acronym were coined by
Kamel [3] and patented in US patents # 4,688,091, 4,688,092, and 4,746,976 to represent
a system that determines image pixel location and registers it to fixed grid. This original
system was designed to meet GOES I-M (the first generation of 3-axis stabilized GOES
satellites) requirements. IMC onboard spacecraft was used to meet three sigma navigation
requirements of 112 microradians and three sigma registration requirements of 42
microradians.

The original INR invention became the foundation for subsequent GOES and similar
systems worldwide[4-8]. The INR system requirements have been tightened as the
spacecraft and ground systems hardware has been improved [9-15]. For example, the
three sigma GOES N-P and COMS navigation requirements were tightened to 56
microradians and GOES-R navigation requirement was tightened to 21 microradians.

The image navigation part of INR relates to determining LOS absolute pointing. In this
paper, this determination is performed for FGF originally used by Kamel [1] and became
the standard for subsequent GOES[16].



Section 2 defines the INR and KF state vectors needed for the improved image navigation
process for imagers with single mirror as well as imagers with two mirrors[13]

Section 3 describes the improved fundamental algorithm which is based on landmark
measurements, inertial angular rate IMU telemetry, and orbit maneuvers delta V (or orbit
with coarse accuracy) to determine attitude correction, orbit (or orbit refinement), and
imager internal misalignments. COMS simulations [8] demonstrated that the fundamental
algorithm meets the 56 microradians navigation requirement with margin.

Section 4 shows the effect of the improved misalignment equations due to the scan axes
orthogonality angle Oy, can be up to 0.2 Oy, on image navigation and up to 0.3 Oy, on within
frame registration for single mirror instruments as well as for two mirror instruments.

The presented algorithms can be applied to systems with star measurements in addition
or instead of landmark measurements. In this case, star measurements are used to determine
attitude correction angles and imager misalignments, and landmark measurements are used
to determine orbit (see Sect. 4.1 of Ref. [1]). If star measurements are used with no
landmark measurements, orbit must be provided by FDS or GPS (see Sect. 4.2 of Ref. [1]).
Finally, the presented algorithms can also be used for IMC onboard spacecraft like in Sect.
5 of Ref. [1] and for ground resampling like in Sect. 6 of Ref. [1].

2 Definitions

Section 2.1 defines the reference frames needed for transformation of LRF pixel
coordinates (Errr, Nirr) to its fixed grid coordinates (Eggp, Npgr). Section 2.2 defines the
INR SV and KF SV needed for landmark residual computation shown in Fig. 1. Section
2.3 defines the time series approach used to determine the INR SV and KF SV values at
a given time within the imagery data block.
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Telemetry FDS Orbit Models Data Base '"LRF, TURF
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v —

Fig. 1 INR and KF State Vectors Computations

2.1 Reference Frames

The reference frames are used for transformation of LOS coordinates from LRF to FGF.
LOS Reference Frame (LRF)

This frame is shown in Fig. 2 and it is attached to the instrument nadir position. The scan
angles (Errr, Nirr) are positive East and North where Nigr is a rotation about X gr axis
and Errr is a rotation about the rotated (dotted) Y-axis.

Instrument Internal Reference Frame (IIRF)

This frame is shown in Fig. 2 and it is attached near the instrument mounting frame to



spacecraft. Therefore, it is also called Virtual Instrument Mounting Frame (VIMF)[17]
The (Eurr, Nurr) are positive East and North where Nk is a rotation about Xyrr axis
and Ejrr is a rotation about the rotated Y-axis.

Misalignments are produced by thermoelastic deformation. These misalignments and
biases prevent IIRF axes to be ideally parallel to LRF axes. For single mirror instruments,
(Eurr, Nire) are determined from (Eirr, Nirp) and six misalignment
angles(dm, Om, O, Omt , Oma, Wim). For two mirror instruments [13], (Enrr, Nurr) are
determined from (Errr, Nirr) and four misalignment angles (Oy,, O, Omz, Win)-

Type 1-2 rotation definition:
Angle N rotation about X-axis
followed by angle E rotation
about the rotated (dotted) Y-axis

ZECLF

. Spacecraft
(E,N) = (ELRF' NLRF) in LRF

(E,N) = (Eyrr, Npre) in IIRF
(E,N) = (Eggr, Nggr) in FGF Y

Fig. 2 LRF, [IRF, and FGF Coordinates Definitions

Attitude Control Frame (ACF)

This frame has its origin at the spacecraft center of gravity. Thermoelastic deformation
and misalignment biases prevent ACF axes to be ideally parallel to the IIRF axes. Rotation
angles of ACF relative to IIRF are defined as (roll, pitch, yaw) attitude
correction angles (¢c0rr' Bcorrs chorr)

Fixed Grid Frame (FGF)

The FGF is shown in Figs. 2 to 5 and it defines the resampled image after orbit, attitude,
and thermoelastic effects are removed. The fixed grid coordinates (Epgr, Npgr) are
consistent with the parameters (A, Ao, dc, -Sy, -S;, Sx, X, y) in Fig. 4.2.8 and section 4.2.8.2
of GOES-R Pug [16]. These parameters are the same as (Ap, As;, Lp, Xi, Yi, Zi, Ergr, Nrgr)
in Sect. 3.5.1 of this paper.

The ideal axes (X, Yi, Zi) represent FGF. The origin of these axes is aligned with the
spacecraft ideal longitude Ag; as shown in Figs. 3 and 4. Positive yaw Z-axis is oriented
towards earth center, positive pitch Y-axis is oriented towards earth south direction, and
X-axis forms a right-handed triad. The ideal axes (X, Yi, Z;) translate and rotate relative
to IIRF. They are parallel to IIRF when (¢p¢, O¢, Yc) = (0,0,0) and they are the same as
IIRF if the orbit translational part (ARgs/Rg;, AAg, Ls) is also = (0,0,0).

Earth Centered Local Frame (ECLF)
This frame is shown in Figs. 2 to 4 and its origin is at the center of the earth. Positive
Xgcir axis is oriented towards the spacecraft ideal longitude Ag; as shown in Fig. 3,



positive Zgcrr axis is oriented towards earth north direction, and positive Ygcrr axis forms
a right-handed triad.

ECLF

(Xi, Yi, Z)= (Xece» Yeor s Zrer)

Fig. 3 Ideal FGF Translation Relative to IIRF

ZgcLr Type 3-1-2 rotation definition:
Angle ¢ rotation about Zyzy
followed by angle ¢ rotation

ECLF about the rotated X-axis followed

by angle O rotation about Y;

Y;! °
i location

Ideal
spacecraft
location * i

Fig. 4 Ideal FGF Translation and Rotation Relative to IIRF

2.2 INR State Vector

The SVir is required for pixel coordinate transformation from (Ejgg, Nigp) to
(Ergr, Nggr) as described in section 3.5.2. This is given by

SVine = [SV¢ SVgrp, SVm]™ (1.1)
where
(Xi, Yi, Zi) are the same as (Xirr, Yirr, Zirr) When SVing = Ogim.
SV¢ is combined attitude state vector representing FGF axes orientation relative to IIRF.
SV,rp 1s orbit translation state vector representing FGF translation relative to IIRF.



SVi, is misalignment state vector representing IIRF misalignment relative to LRF.

SVe = [dpc 8¢ Wel™= SVeor + SVace (1.2)
Svcorr = [d)corr ec::)rr ll»'corr]T = SVcorr,model + Xcorr (13)
SVacr= [Pacr Oacr ‘IJACF]T (1.4)
SVorp = [ARS/RSi Adg LS]T (1.5)
ARs/Rs; = (Rs — Rg)/Rgi, Mg = A5 — A (1.6)
SVm = SVm,model + X (1-7)

and

(SVeorrmodel, SVmmodel ) are computed in section 3.10.

(Xcorr» Xm) are defined in Egs. (4.1), (4.2), and (5.2) and determined by KF.

Rg= spacecraft geosynchronous radius.

Rs; = ideal geostationary radius = 42164160 meters.

(Ls, As, As;) = spacecraft (geocentric latitude, longitude, ideal longitude)

(ARg/Rg;, AXg, Lg) are called Kamel parameters [3,17,18] because they were originally
used by Kamel [3] for GOES I-M [18] to represent actual orbit deviation from ideal
geostationary orbit produced by spherical earth with no perturbations. In this paper, these
parameters are determined by KF or by a combination of FDS orbit and refinement by
KF. If FDS provides maneuver delta V

SVorb = Xorp = [SRS /Rs OAg 8Ly ]T: ideal orbit refinement by KF 2)

If FDS provides coarse orbit instead of delta V
SVorb = [ARgps/Rsi  MApps Leps 1™ + Xorb (B.1)
Xorb= [‘(SRS/RS 62s OLg ]T = FDS orbit refinement by KF 3.2)

Now, SVy,in Egs. (1.1) and (1.7) represents internal instrument misalignments as
described in Sect. 2.1. For single mirror instruments, such as in GOES I-P, COMS, and
MTSAT?2, SV is given by Eq. (31.3) of Ref.[2]

SV = [d)m Om Om Omi O llJm]T = SVm,model + Xm 4.1)

For two mirror instruments [13] such as in GOES-R, Himawari, and GK-2A, SV, is
given by Eq. (44.2) of Ref.[2]
SVm = [Om Om1 Omz llJm]T = SVm,m::Jdel + Xm (42)

Kalman filter state vector
SVkr = x is used for simplicity and it is given by

SVKF =X= [X'Eorr Xgorr Xgrb Xgrb X& XE]T (5'1)

Xeorr= 0SVeorrs Xcorr = CONstant. (5.2)
T . . . . . 9T

Xorb = SSvorb = [SRS/RS 8)‘5 SLS] > Xorb = 8SV0rb = [SRS/RS 8)\5 SLS] (5-3)

Xm = 65V, , X, = constant. (5.4)

Now, Kalman filter state equation is based on attitude correction, orbit, and
misalignment kinematics [see, e.g., Eq. (13-78) of Ref. [19], with u =0]



x=Fx+w 6.1

F is state matrix and w is process noise vector

Fcorr 06X6 06)(2m 0 I 0 I
F= 06x6 l:orb 06)(2m s Fcorr = [ 03X3 03x3 ]; Fm = [ Omxm 6nxm ] (6'2)
02mx6 02mx6 Fm 3x3 3x3 mxm mxm
0sys Ligs 3 0 0 01 O
Forb = | 2F.. 20.F.. | F2=|0 O OfFp=(-1 0 0 (6.3)
ezt et 22 0 0-1 0 0 0
w,= sidereal earth rotation rate = 7.2921159E-05 rad/sec (6.4)

Feorr and Fp, are obtained from Egs. (5.2) and (5.4) and Foy, is obtained from Euler-
Hill’s equations, e.g., Eq. (12.17) of Ref. [20], with n replaced by w, and (%, y, z, X, ¥, Z)
replaced by (8Rs/Ry;, 8As, SLs, 8R,/Rg;, SAg, SLs).

2.3 State Vector Time Series

Landmark (or star) residual shown in Fig. 1 is computed using the INR state vector SViyg.
This requires evaluating SViyg at a given time t; from KF SV and the parameters shown
in Fig. 1. This is done using linear interpolation and transition matrices.

For attitude telemetry time series spaced, e.g., at one second or 0.01 seconds and FDS
orbit and thermoelastic models (SViymodel> SVeorrmoder) time series spaced, e.g., at
one-minute, linear interpolation is used

yi= Yo+ [(y1 - yo)/(ti—to)] (ti—to) to<ti<t (7)

where (yo, to) and (yi, t;) are two successive points in the time series with to < t;< t; and
(i, i) is the interpolated point.

State vector time series are spaced at times determined by landmark (or star)
measurements which could be few minutes apart. In this case, its value at t; is determined
from its value at to using transition matrix A(At;), At; = ti—to as described in Sect. 3.3.

3 Improved Image Navigation Algorithm

Figure 5 shows KF flow for the fundamental INR algorithm. KF uses one landmark (or
star) at a time to determine best (a-posteriori) state vector and state covariance matrix
(x§, P") estimate. KF is then re-initialized at t; to make propagation always between to
and t; and estimation at t;.

L (ty,x3,Py) L (ty,x3,Pp)

2. SV 2. SV

3. AZ 3. AZ

4. (ty,x1,P) 4. (ty,x],P])
(to. X5, P3) 5. (to,x3, PY) 5. (to,Xg, Pg)

[ | |
Ay | A(At) |

Landmark 1 Landmark 2,3, ...

Fig. 5 Five-Step Kalman Filter Flow



3.1 Five-Step Kalman Filter Process

1. Compute a-priori state vector and state error covariance matrix (x7, P;”) from (x&, P;")
using the transition matrix A(At) of Sect. 3.3 and process noise covariance matrix
Q(At) of Sect. 3.4 with At = t; — t,. This is called state vector and covariance matrix
propagation from ty and t;

X7 = A(AY) x¢, PT = A(AY) PFAADT + Q(AY) ®)

Compute SViyr from X7 using sections 2.2 and 2.3.

3. Compute landmark residual AZ=Z—Z using section 3.5.
If landmark is accepted because residual is within predetermined limit, go to step 4.
If landmark is rejected because residual is outside the predetermined limit set
(t, x7, P) = (t1, X7, P") and go to step 5.

4. Compute (x§,P") from (x7, P;") and measurement model (H,R) of Sects. 3.6 and 3.7.
This is called state vector and covariance matrix estimation at t;

xt =x7 —KAZ, K =P HT(HP[HT +R) (9.1)
P = (- KH) P7(1— KH)" + KRKT 9.2)
where
x = KF state vector
I = identity matrix
K = Kalman gain obtained from minimizing the trace of the covariance matrix P;".
H = (0Z/0x%)4=( = landmark location sensitivity matrix.
Z = estimated landmark measurement =Zo+ Hx + ¢.
Z, = Z evaluated at x = ¢ = 0 and & = measurement noise vector, E(g) = 0.
R= E(ee"), E denotes the expectation value.
P =E[e(e1)"], 1 =x—xi. P = E[ef(e])'], ef =x—x{.
Note that P of Eq. (9.2) is used instead of the classical P;" = (I — KH) P, to ensure
P;* remains positive definite and symmetric [see Eqs. 13-72 & 13-76 in Ref. [19]].

Note also that (Ax, ., Axtp, AxE) = XEorm Xt X)) — Keorm Xorbs Xm)
obtained from Eq. (9.1) can cause jumps in level 1B images at t;. This can be avoided
by adding its effect to (XZorr, Xgpy, X)) [also from Eq. (9.1)] by replacing it with
(Xgorr Xgvpy X))+ (AXErr, AxEa, AXT) /6t, where, 8t = delta time, e.g., to next
landmark (or star) or next KF event at t;. After this slope adjustment, reset

(X:orr: X;rb: X:T-'l)tl = (Xgorr: X;rb: Xr_n)t1 (93)

5. Re-initialize KF at t; by setting (to, X¢, P) = (t1, xF, P to start the next cycle from
to to t;.

3.2 Kalman Filter Initial Conditions

Kalman filter initial conditions (x&, P;) are needed to start KF at epoch to as shown in Fig.
5. These, e.g., can be given by



X3 = O1z42m,> Py = Eleg (e5)"], e = xo —x§ = %o (10.1)
Pct;rr,o 06x6 06X2m I 0
l:)0+ = 06X6 Potb,o 06)(2m > PcT)rr,O = O-gorr,o 03X3 03X3 ]a (102)
+ 3x3 Y3x3
Ome6 02mx6 Pm,o

P+ _ 0_2 I3x3 03x3 P+ _ O_2 Imxm
orb,0 — Yorb,0 0 0 >fm,0 — Ym,0 0
3x3 Y3x3

mxm ] (10.3)

0
mxm Omxm
(Ocorr,00 Oorbit,0» Om,0) are determined by error analysis.
Iixs= 3x3 identity matriX, Imxn= mxm identity matrix.
0353= 3x3 null matrix, Opxm= mxm null matrix.
m= number of instrument internal misalignments.

3.3 Transition Matrix A

Kalman filter propagates the state vector via Eq. (8) with noise term omitted as shown by
Eqgs. (13-80) to (13-86) in Ref. [19]

X(ti) = A(Atl) X(to) 5 Ati = ti — tOs to < ti < tl (111)
Acorr (Ati) 06x6 06x2m
A(At) = | Ogye Aorn(At)  Ogyom (11.2)

02mx6 02mx6 Am (Ati)
Acorr and A, are obtained from Eq. (6.2) and A, (At;) is obtained from Euler-Hill’s
equations, e.g., Eq. (12.18) of Ref. [20], with n replaced by we, (X, ¥, z, X,V,Z)
replaced by (8Rs/Ry;, 8As, SLs, 8R,/Ry;, Sis, 8Ls), and w.At; by y

Lyys Lsxst; .
Acore(At) = | 5 ‘],Am(Ati) = [Ig“m Imf‘mAt‘] (11.3)
3x3 3x3 mxm mxm
Ay A
Aorp(At) = [A:f Alzzz] (11.4)
(4-3¢,) 0 o0 S, 2(1-¢,) o0
Au=6(s, —v) 1 0f Ap=g|-2(1-¢) (4s,-3y) 0| (15
0 0 ¢ 0 0 S,
3 WSy 0 0 c, 2S, 0
Ay =| 6w.(C,— 1) 0 0 |.,Ap=]|-2S, (4Cc,—-3) 0 (11.6)
0 0 — S, 0 0 c,

Where, C= Cos X, Sy= Sin x, and T,= Tan x are used throughout this paper.
3.4 Process Noise Covariance Matrix Q

The process noise covariance matrix Q is obtained from the system modeling process
noise vector w of Eq. (6.1) which is zero mean white noise assumed to be uncorrelated
with the measurements noise vector € of Eq. (22)

E[w(®)] = 0,E[w®w(D)T] = V()8 (t — 1) (12.1)



where, 8pis the Dirac delta and V is known, symmetric, nonnegative definite matrix
given by

Vcorr,o 06X6 06)(2m Vcorr 05X5, 06X2m
V(to) = 06x6 Vorb,o 06)(2m ,V = 06x6 Vorb 06)(2m (12,2)
02mx6 02mx6 Vm,O 02mx6 02mx6 Vm
Voo = 0%0ylaa  Osxs _ [y las Osxs (12.3)
Yol o 0ss IV |0 o2, 1 '
3x3 3x3 3x3 uy *3x3

y = corr, orb, or m. For m, 3 replaced by m.

0y,= measurement white noise standard deviation, rad.

o,= random walk standard deviation, rad/sec'’.

o0,= rate random walk standard deviation, rad/sec*”.
Now, Egs. (13-79), (13-83) and (13-89) of Ref. [19], lead to

Q(AY) = V(ty) + ftZA(t, ) V(DA(t, 7)Tdt (13.1)
Substituting A = [ + F(t-t) in above equation leads to

Q(A) = V(t,) + VAt + § [FV + VFT]At? + %FVFTAt3 (13.2)

This leads to the closed form process noise covariance matrix

Qcorr 06x6 06x2m
Q(ay = [Osxe Qorb Oaxzm] (13.3)
02mx6 02mx6 Qm
Where
(oﬁo,y +o0l, At+ gcﬁ,yAt:“) | %oﬁ,yAtzl3x3
Q= (13.4)

1
> 05 yAt? 1345 0%y At Iy

y = cort, orb, or m. For m, 343 is replaced by I ,;yp.

Note that the first element of the above matrix is the same as Eq. (7-143) in Ref. [19],
which can be evaluated at, e.g., At = (1, 120, 300) seconds to solve for (o, 0y, 0,) from
3 equations in 3 unknowns.

3.5 Landmark Residual Computation

The landmark residual AZ=Z—Z is needed for step 3 of Sect. 3.1 and it is computed in the
next two subsections [see Egs. (15.1) and (20.3)].

3.5.1 Actual Landmark Measurement Computation

In view of Figs. 2 and 4 and using unit vector components along (Xi, Y;, Z;) fixed grid
axes, we get

Rp; = P— Ry; , Rp; = RpiRp;, P = (Re + h)P, Ry; = RgRy; (14.1)
Where

10



Rpixi SErcr Crp S, 0
Rpircr = |Reivi| = | ~CEror SNecr|» Prar =| ~Ste |s Rsipr = [ 0 ]
ﬁPi,Zi CEFGF CNFGF _CLPCN\P -1
1
Re = Req(1+a.S2,) ?,8e = (1—N2—1=2f ,Adp =2p — Ag

And

R¢q = equatorial radius = 6378137 meters, f = earth flattening=1/298.257222096.
Lp= landmark geocentric latitude, Ap = landmark longitude.
h = landmark height.

This leads to the landmark coordinates to be stored in the landmark database
Z= [EFGF NFGF]T
Eper = sin™![(Re + h)C,, SAAP/RPi]

Nper = tan [{(R, + h)S;.}/{Rsi — (R + h)CLpCA}\p}]
Where,

1

Rp;i = |Rpi| = [P — Rgi| = [(Re + h)? + RE — 2Rg;(R, + h)Cy, Cp, |2

3.5.2 Estimated Landmark Measurement

(14.2)

(14.3)

(15.1)

(15.2)
(15.3)

(15.4)

Estimated fixed grid coordinates (Eggp, Nggr) are obtained from (Egp, Nygr) of Fig. 2

and SVinr of Eq. (1) as shown in the next four subsections.

3.5.2.1 LRF to IIRF Transformation
The unit vector Rp components in IIRF is given by Fig. 2.

Py T
RP,IIRF - [SEIIRF : _CEIIRF SNIIRF : CEIIRF CNIIRF]

(16.1)

The transformation from (Errr, Nirr) to (Enrr, Nurr) is given by Egs. (6), (7.2), (7.3),

(31.1) to (31.3), (38.1), (44.1), and (44.2) of Ref. [2]:

EIIRF] ELRF]
= —hp,SV,
[NIIRF Nirp mem

For single mirror instruments, FPM rotates by the angle N and

ELRF] [ Sin~!(cSg + ACg) ]

= -1 SNCE—ASNSE+BCN.

Nire Tan (chcE—AchE—BsN)

Cc= Vl_az_bz,AzaCN+bSN,B =bCN_aSN

sy i 0 £ 0: 0  i1-CyiB
hm=[1—2—252—2(1+sﬁ)sTEs(1—cE)/cEs —TESNE—A]

SVm = [¢m Om Om Omi Om llJm]T

(16.2)

(16.3)

(16.4)
(16.5)

(16.6)

11



And
(E, N) = optical (East, North) scan angles = (2e, n)
(e, n) = mechanical (east, north) scan angles.
(a, b) = (E, N) detector LOS location relative to FPM center.
For two mirror instruments, FPM reflected image does not rotate and

Sin~(cSg + aCg)
ELRF]=[T 1SS CEaSnSg+by (17.1)
LRF an (CCNCE—aCNSE—bSN)
[0 0 i1—Cyi b
fim _[ Te i (1—Cg)/Cr i —TeSy i —a (17.2)
SVim = [Om Om1 Omz ml” (17.3)

And (E,N) =(2e, 2n)

It should be mentioned that (O, , 0,1, Oma, Wn) = (Orthogonality, Orthogonalityl,
Orthogonality2, Yaw) misalignment state vector was first introduced by Kamel during
his INR support (2005-2008) of GOES-R ABI implementation phase at ITT.

Note that, inverse transformation to get (E g, N rg) from (Ejjrr, Njjrp) using Eq. (16.2)
is needed to search for landmarks in level 1A data when IMC is off (or generate star LOS
commands when IMC is off) from their (Eggp, Nggr) coordinates of Eq. (18.2). This can
be obtained by substituting (E, N) = (Eyrg, Nyre) and (a, b) = (0,0) in Eqgs. (16.4) and
(16.5) for single mirror instruments or in Eq. (17.2) for two mirror instruments. Note also
that the misalignment state vector dimension = 6 for single mirror instruments and = 4 for
two mirror instruments. This is because in single mirror instruments, the FPM reflected
image rotates by the NS angle N while in the two mirror instruments, the FPM reflected
image does not rotate.

Because / EZgp + NZgp < 8.7°, the effect of (1-Cg) and/or (1-Cy) terms in hy on INR
performance could be insignificant. Also, because (a, b) are small, Y, effect could be
insignificant. In this case, only orthogonality misalignment Oy, is used [14,17] and the
number of misalignments m=3 for single mirror and =1 for two mirrors. This suggests
that KF INR software design should be based on deleting O,,,; and/or O, in addition to
Y, if proven to be insignificant by analysis and/or during IOT.

It should be mentioned that the yaw misalignment state Js,;, determination requires star
and/or landmark measurements to be located at maximum separation from the FPM center.
This is because the measurement residuals are not sensitive to yr,, for measurements at
the FPM center (i.e., a =b = 0). If this complicates INR operation, a special on orbit test
(or inspection of level 1B swath to swath imagery data) can determine Y, bias (i.e.,
constant term). The use of this bias in Egs. (16.6) or (17.3) should at least reduce (but not
eliminate) yr;, effect on INR performance. The special test consists of sighting a star (or
a landmark) 3 times. The first time t; determines the location of the star (or landmark)
within the FPM, second time t, makes the star (or landmark) located near the extreme
south of the FPM, and third time t; makes the star (or landmark) located near the extreme
north of FPM. The i, bias is then computed from y,, = (E; — E;)/(N; — N,), where
(E,, E3) are the second and third star (or landmark) EW locations and (N,, N3) are the
corresponding NS locations. Note that the third measurement must be rectified to the time
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of the second measurement. This rectification is performed using spacecraft attitude
telemetry and orbit knowledge to subtract spacecraft attitude and orbit effects on star (or
landmark) motion relative to spacecraft between t, to t;.

3.5.2.2 IIRF to FGF Transformation
The transformation of ’RP‘HRF components of Eq. (16.1) to ﬁp‘FGF is given by

= = = = T =
RP.FGF = [RP,Xi RP,Yi RP,Zi] =M RP,IIRF (18.1)

Rpuirr = MTRp pr for inverse transformation. (18.2)
The matrix M rotation is type 3-1-2 as shown in Fig. 4. Using Appendix E, Table E-1 of
Ref. [19], and replacing (¢, 0, {) with (Y, d¢,6c) shown in Fig. 4, we get
CoCy — SoSSy CoSy +Se S¢Cyy — SeCy
M= | —SyCq CyCo S¢ (18.3)
SeCy + CoSeSy  SeSy — CeSeCy  CyCe |,

3.5.2.3 Rp, Ap, Lp Computation
In view of Figs. 3 and 4, Egs. (14.1) (14.2), we get

P=Rs+ Rp, P = (R, + h)P,Rs = RgRg, Rp = RpRp (19.1)
CL,Sm, CLeSms Rpxi

Prgr = SLp > Rsper = _SLs » Rprer = [ Rpyi [ = MRpre (19.2)
Cr,Canp CrgsCang Rpzi

and Rp is obtained from

[P| = [Rs+ Rp| = |RsRs+ RpRp| — (Re + h)? = RZ + R} — 2RpRsCq,
Cq, = —dot product of Rgand Rp = —RpxiCriSas + RpyiSig + RpziCrsCang
Solution of the above quadratic equation in Rp leads to

_Rs

Rp="%, 1 =[Cq — €2 = C2,] . C2 = 1- [(Re +h)/Rg]? (19.3)
Where
_1

Re = Req(l +a, Sfp) 2, Reqand a, are obtained from Eq. (14.3)
(Sip» Ap, Lp) obtained from Egs. (19.1) and (19.2)
Stp = Rs(Sig — EP,\(i/r)/(Reﬂl) , Lp=Sin"'[Rg(Sy¢ — RP,Yi/r)/(Re+h)] (19.4)
Ap=hsi + Akp=hsi + Tan [(r CpgSprg +Rpxi)/(r CgCarg — Rpzi)] (19.5)

Note that because a. = 0.007 in the R. equation, accurate R, and r values should be
obtained using couple of iterations starting with R,= Req on the right side of the r and
Si,equations. Note also that \/CZ_ — CZ_ is imaginary when Cés < Cée. This indicates
that LOS (E g, N rp) correspond to a point outside Earth and the transition from Earth to
space is undefined. This can be avoided if a fictitious earth with C,, = Cq, is used in
Eq. (19.3) for the space portion of earth images. In this case, Eq. (19.3) reduces to

Rp = RsCq, T = 1/Cyq, (19.6)
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3.5.2.4 Fixed Grid Coordinates Computation
In view of Figs. 2 and 4 and using Egs. (14.1), (14.2), (19.1), and (19.2), we get

RPi = ﬁp + ﬁS - _R)Si (201)

ﬁPi,xi S
- - R - - Rsi &
Reirr = |Rpivi| = o= {MRpurr + r[Rsror — 3> Rsiporl} =|~Chrer SNecr (20.2)

RPi,Zi CEFGF CNFGF

Z=[§FGF]=[ Si_nl_i(ﬁpi'xg ] (20.3)
FGF —Tan™"(Rpiyi/Rpizi)

Note that for star measurements, ﬁs - ﬁSi is insignificant compared to _R)p in Eq. (20.1)
and, therefore, ﬁpi_FGF: Rprer and Z is directly obtained from Eq. (18.1) and Sect.
3.5.2.3 is skipped.

3.6 Landmark Location Sensitivity Matrix H

The matrix H is used in step 4 of Sect. 3.1

H= (Dy=0 = [Heorr Horp Hml, Hy =

oz 9SVy
(o) 0] @11
-

Where y = corr, orb, or m and n=3 for y = corr and orb and n = m for y = m. The matrix
H is obtained from the first and second rows of Eq. (20.2) with matrix M of Eq. (18.3)
and Rgpep of Eq. (19.2) linearized using (sin 8, cos 8) = (8¢, 1). SV is obtained in
terms of x from Eqgs. (1.1) to (5.4). Substituting Eqgs. (14.2), Eq. (16.1), and (19.2) in Eq.
(20.2), we get

Rsi/Rg =1 —ARg/Rg (21.2)
Rp/Rpi=1— r[CEIIRF Chige ¥~ SEnre ¥~ CEuge SNIIRF]SVOFD (21.3)
SEFGF SEIIRF
~CeperSeer | = |~ CoureSNire + GeSVe + rGorb SVorp (214
0 C S
Ge = _CEURF [ _CN"RF N(;IRF T;i:?] (21.5)
Gorpy = [CEIIZRF CNIIRFSEIIRF Cl%?mur - SNIIRFSZEIIRFCZEIIRF ] 21.6)
_C”RFCNIIRF SNIIRF CEIIRF SEIIRF SNIIRF - (1 - CEIIRFSNIIRF)

Where, SV is form Eq. (1.2) and SV}, from Eq. (1.5).

Now, the partial derivatives of Eq. (21.4) w.r.t. y and using Eq. (16.2) for the partial
derivatives of (Ejrp, Nijrp) W.I.t. Xm lead to the H matrix of Eq. (21.1). Note that
0SV, /0%, = L. This leads to
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1. Heor is due to partial derivatives w.r.t. (Xeorr> Xcorr) Of Egs. (1.2), (1.3), and (5.2)

0 C S
Hcorr = _[hcorr 02X3]r hcorr = [1 TEI;N _ TECI:;] rTE = SE/CE (21'7)

(E,N) = (Eggp, Npgr) of Eq. (15.1) (i.e., from landmark or star database).
2. Homis due to partial derivatives w.r.t. (Xorp, Xorp) of Egs. (2), (3.1) and (5.3)
_ [SECx Cg  —SgSy
Horb - [horb 02x3]= horb - r [SN/CE 0 CN/CE]
Where,
F = Rsi/Rp; = [Cas - (Cés - Cée)l/z]_l
Cgs = CeCy, Cée = 1 — [(Re + h)/Rg]?, (E,N) = (Ergr, Nigr)
R, = earth radius from Eq. (14.3) evaluated at landmark geocentric latitude Lp from
the landmark database.
Note that for star measurements, Rg;is insignificant compared to Rp; and, therefore,
= 0. This indicates that star measurement residuals are insensitive to orbit translation
and orbit must be determined either using landmark measurements or by FDS using
ground ranging or GPS receiver on board spacecraft.
3. Hy, is due to partial derivatives w.r.t. (X, Xp) of Egs. (4.1), (4.2), and (5.4)

_[Cua - clm]
Cyr - Com

(21.8)

Hp = —[hy  Opml, hy (21.9)

Where 3 < m < 6 for single mirror instruments and 1 < m < 4 for two mirrors
instruments as described in Sect. 3.5.2.1.

3.7 Landmark Measurement Noise Covariance Matrix R

The matrix R is used in step 4 of Sect. 3.1
R= E(ggT) = cFIZ\/[IZXZS 0-lz\/l = cTl?msiton + Grz'natch (22)

€ = measurement noise vector

oy = landmark measurement one sigma error.

Oposition= Position error within the data base.

Omatch = Matching error of landmark chip to imagery data.

3.8 Attitude Computation from Inertial Angular Rate Telemetry

The spacecraft inertial angular rates (wgy, Wgy, W) provided in wideband data every Ataq
seconds (e.g., 0.01 seconds) can be directly used to determine SVacr of Eq. (1.2). The
rate SVacp is determined from (wgy, Wgy, Wy, ) using Fig. 4 with IIRF and (¢, 6, W)
replaced by ACF and (¢, 0, P)acr. Starting with 0,cr + w, about —Y; axis, followed
by dacr about the new —X axis, and ending with s ¢ about —Zac axis and using MTof
Eq. (18.2), we get
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Wy . 0 . Cy . =S4 Co
[“’Sy = —Wacr [0 — bacr [S\p] — (Bacr + we) | CyCo (23.1)
Osz L 0 1acr So lacr
This leads to
(b WsySy + WexCys
SVacr = |6 =—| e+ (wsyCy — 0sxSy)/Cy (23.2)
[ ACF W5z = (WsyCy — WsxSy)Se/Co ACF

Now, SVc of Egs. (1.2) and (1.3) is re-defined to separate SVeorrmodel
SVC = gVC + SVcorr,models §VC = SVACF + Xcorrs SVC = S.VACF + )'(corr (233)

And the SV is computed over At = t; — t, from Eqs. (23.2) and (23.3) as follows:
Let j = Integer(At/Atay), T; = to + i Aty and do the following
Fori=1, ..., j plus final step from T; to t;

SVe(t1) = SVe(Tim1) + SV (Ti—1) Aty (23.4)
At the start of Kalman filter
(gvc' Xcorrs Xcorr) = (03; 035 03) and Wc(to) = SVACF(tO) from Eq~ (232)

At KF re-initialization (see Fig. 5) ) )
SV (ty) = SVc(t,) from Eq. (23.4) and SV(t,) = SV (t,) from Eq. (23.3)

Note that %o,y in Eq. (23.3) compensates for IMU drift effect on SV,cp of Eq. (23.2).
3.9 KF Detailed Computation (for each data block)

Level 1A data block is searched for landmarks and if there are no landmarks found within
the data block, go to the end of the block (item b below). If landmarks (e.g., a total of
LMr) are found, the location (Errr, Nirr) of each determined landmark is time tagged,
e.g., in coordinated universal time (UTC). In view of Fig. 5, the KF propagation process
starts from (to, x¢, P") of the last event prior to the data block to the first (ty,x7, P;)
within the data block followed by SVine and AZ computations. If AZ is acceptable,
proceed to (t;, x{,P;") estimation and KF re-initialization at t,. This is repeated for all
landmarks within the level 1A data block as follows

a. For k=1 to LMt do to ENDFOR

t; = UTCx at landmark number k, At = t; — t,

Propagation: From step 1 of section 3.1.

INR SV (SVingr): From step 2 of section 3.1.

Residuals AZ: From step 3 of section 3.1.

Estimation: From step 4 of section 3.1.

Re-initialize KF at t;: From step 5 of section 3.1.

ENDFOR

b. At end of data block, do the following

t;= UTCena at end of data block, At = t; —t,

Propagation: From step 1 of section 3.1.
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Re-initialize KF at t;

(tOr Xa—s P0+) = (ter-l'—s P1+) = (terIs Pl_)'

If maneuver delta V is provided by FDS

c. At maneuver, do the following

t1= UTChanewver at maneuver time, At = t; — t,

Propagation: From step 1 of section 3.1.

Re-initialize KF at t;

(XI—, P1+) = (Xl_l pl_) + (AX, AP)

Ax = R5![0149 AVepsy AVipsy AVeps, 01X2m]T

AP diagonal terms 10 to 12 are obtained from Av errors.

(tO' Xa—a P0+) = (t1,x-1+, P1+)'

If orbit is provided by FDS instead of delta V

d. At orbit determination (OD), do the following

t1= UTCOD at OD time, At = tl - tO

Propagation: From step 1 of section 3.1.

Re-initialize KF at t;

(x1,P") = (x7,P0) + (8%, 6P)

8x = [0146 ARpps/Rsi Mpps Leps 0143 01x2m]gef0re oD
_[leé ARFDS/RSi A)\FDS LFDS 01)(3 01X2m]:fter oD

Note that dx is selected to avoid jumps in Eq. (3.1) at OD.

6P diagonal terms 7 to 9 and 12 are obtained from OD errors.

(tO' Xa—a P0+) = (t1,x-1+, P1+)'

3.10 Thermoelastic Model Time Series

The thermoelastic effects are caused by the apparent motion of the sun around the

spacecraft which repeats daily with a slow seasonal variation. This suggests modeling
(SVeorr» SVim) of Egs. (1.3) and (1.7) by, e.g., 15th order Fourier series with one solar day
fundamental period like that used by Kamel for GOES I-M [see Sects. 4.3 and 4.6 of Ref.
[3] and Eq. (1) of US patent #602391].

The following are additional two approaches to determine time series for (SVeorr,model»

SVin,model)» €., once/day

1.

represent (SVeorr model> SVm,moder) by Fourier series and use off-line least squares to
determine the Fourier series coefficients from previous 7 days of (SVor, SVy,) data.
The results are then used to generate the next day (SVeorrmodel> SVmmodel) time

seven-day average of (SV,, SVeorr) data

create uniform time series at, e.g., one-minute interval using interpolation of
original (SV¢or, SV, ) time series.

the uniform time series are then used to generate the next day (SVeorrmodels
SV moder) time series as follows

For i= 1, 2, -, 1440, compute the 8" day models from previous 7 days state vectors
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Svcorr,model (ti,s) = %ZE:; Svcorr (ti,n)s SVm,m::Jdel (ti,s) = % Zgzi SVm (ti,n) (24)

Note that (SVeorr,model» SVm,mode1) are initially set to (03, On) at the start of KF. Note
also that (X¢orr, Xm) should be adjusted to avoid jumps in Egs. (1.3) and (1.7) at the
transition time from old time series to new time series (e.g., at midnight or OD time).
Also, (SVeorrmodel> SVm model) are uploaded daily for IMC on-board Spacecraft [1].

4 INR Improvement for Single Mirror Instruments

The use of Eq. (16.6) instead of the classical SV, = [¢y, 6py]Tin GOES I-M and
MTSAT-1R type instruments is expected to improve INR performance and could have
improved GOES I-M and MTSAT-1R INR performance if it was available at that time.

4.1 GOES I-M Type Instruments

The yaw misalignment ,, has insignificant effect because the visible array dimension is
1 km x 8 km and the IR array dimension is 4 km x 8 km (see pages 28 and 29 of Ref.
[21]). Therefore, using Eqs. (16.5) and (16.6) with (A, B) = (56, 112) prad, a misalignment
yaw Y, =1000 prad produces (EW, NS) errors = (AE, AN) = (0.112,0.056) prad which
are insignificant. On the other hand, the orthogonality Oy, due to thermal variation and/or
bias of 500 prad produces large NS star measurement residual error = Oy, Tan E = 100
prad (= 30% of Oy) at E = 11° and NS landmark measurement residual error = O, Tan E
~ 75 prad at E = 8.7° . This error has small effect on frame-to-frame registration but has
significant effect (=150 prad = 30% of On) on within frame registration. The secondary
orthogonality misalignments (Op,;, Op,,) thermal variation and/or bias of 500 prad
produces smaller EW and NS errors because their effects on INR performance is
multiplied by (1-Cg) and (1-Cx). This suggests that Kalman Filter INR software design
should be based on deleting Y,,, Oy and/or Oy, if proven to be insignificant by analysis
and/or during In Orbit Test (IOT).

4.2 MTSAT-1R Type Instruments

MTSAT-1R FPM dimension is about 26 km x 336 km (see Fig. 5 in Ref. [22]). Therefore,
Therefore, using Eqgs. (16.5) and (16.6) with (A, B) = (364, 4704) prad and y,;, = 1000
urad produces (AE, AN) = (4.7, 0.4) urad errors. The orthogonality and the secondary
orthogonality angles (O, On1, Omz) produce the same errors described in Sect. 4.1.
During MTSAT-1R 10T, large residual errors between the actual INR measurements
and their predicted values led to unsatisfactory imagery products. Many hypotheses were
advanced to explain these errors during rigorous, extensive testing and analysis of the
daily landmark residual plots led by Mr. Seiichiro Kigawa of Japan Meteorological
Agency (JMA). This analysis concluded the existence of systematic errors, but none led
to effective correction. To minimize cost and schedule delays of a protracted investigation,
ParSEC method was developed and later patented [23] that could remove these systematic
errors without the need to know their origin. In this new method, the various residual
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errors are modeled in terms of a power series whose coefficients are determined by a least
squares algorithm to minimize the landmark residuals. The ParSEC algorithm corrects the
detected East and North scan angles (E, N) from a distorted raw image into a non-distorted
(E’, N') space as

(E’,N') = (E,N) — (AE, AN) (25.1)
AE = Ay + A{E+A,N + A;EN + A,E? + AgN? (25.2)
AN = By + B;E+B,N + B3EN + B,E? + BgN? (25.3)

Where

(E, N) = Instrument (EW, NS) scan angles from raw image
(AE, AN) = ParSEC (EW, NS) correction angles

(E’, N") = ParSEC (EW, NS) corrected scan angles

(A, Bi) = (AE, AN) power series i ParSEC coefficient

The navigation solution residuals after implementation of this method were typically
about 14 prad for stars (~1 raw visible star sense pixel), 20 urad for visible landmarks
(~2/3 visible image pixel), and 40 rad for IR landmarks (~1/3 IR image pixels), which
were consistent with expected INR performance. Recently, the ParSEC algorithm was
also used in Ref. [24] to improve INR performance.

Note that some of the terms in Eqgs. (25.2) and (25.3) are covered by the improved
misalignment Eqs. (16.5) and (16.6) (using cos x = 1- x*/2, sin x = x) and were not covered
by the first two columns of Eq. (16.5) that was available at MTSAT-1R time. Most likely,
these were the unknown source of the systematic errors. If this is the case, the improved
misalignment Eqgs. (16.5) and (16.6) could eliminate future need for the ParSEC algorithm.

5 Conclusion

Improved image navigation algorithms are presented using KF to determine attitude
correction angles, orbit, and instrument misalignments using landmark measurements and
orbit maneuvers delta V (or orbit with coarse accuracy) provided by FDS. Application to
systems with star and landmark measurements and systems with star only measurements
are also presented. The use of the presented improved algorithms is shown to significantly
improve the INR performance for single mirror instruments like those used for GOES I-
M and MTSAT-IR and for two mirror instruments like the ABI used for GOES-R.
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