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Differential Games for pursuit evasion problems have been investigated for many years.

Differential games, with linear state equations and quadratic cost functions, are called Lin-

ear Quadratic Differential Game (LQDG). In these games, one defines two players a pursuer

and an evader, where the former aims to minimize and the latter aims to maximize the

same cost function (zero-sum games). The main advantage in using the LQDG formula-

tion is that one gets Proportional Navigation (PN) like solutions with continuous control

functions. One approach which plays a main role in the LQDG literature is Disturbance

Attenuation (DA), whereby target maneuvers and measurement error are considered as

external disturbances. In this approach, a general representation of the input-output re-

lationship between disturbances and output performance measure is the DA function (or

ratio). This function is bounded by the control. This work revisits and elaborates upon

this approach. We introduce the equivalence between two main implementations of the DA

control. We then study a representative case, a “Simple Pursuit Evasion Problem”, with

perfect and imperfect information patterns. By the derivation of the analytical solution

for this game, and by running some numerical simulations, we develop the optimal solution

based on the critical values of the DA ratio. The qualitative and quantitative properties

of the Simple Pursuit Evasion Problem, based on the critical DA ratio, are studied by

extensive numerical simulations, and are shown to be different from the fixed DA ratio

solutions.
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I. Introduction

Pursuit-evasion differential games have attracted considerable attention since the seminal works of [1, 2].

A class of differential games, with a couple of players driving linear state equations both affecting a

quadratic cost function, is called Linear Quadratic Differential Game (LQDG). In these games, the pursuer

tries to minimize a quadratic cost function, whereas the evader tries to maximize the same cost function

(zero-sum games). The cost function includes weights on the squared miss-distance, the control efforts of

both players, as well as occasionally trajectory shaping terms. The main LQDG formulation leads to a

derivation of popular guidance laws such as Proportional Navigation (PN), Optimal Rendezvous (OR), etc.

A problem which is closely related to the LQDG problem is the one of Disturbance Attenuation (DA), where

pursuer actions are considered to be control actions, whereas all external actions such as target maneuvers

and measurement errors, are considered to be disturbances [3, 4]. In fact, the DA problem is just one side of

the double inequality forming the saddle-point relation and leads to the H - infinity problem. DA problems

can either deal with perfect information patterns, where both pursuer and evader share perfect information

regarding the full state-vector, or imperfect information formulation, where both players have access only

to noisy measurements of a linear combination of the state-vector [5, 6]. The present paper, revisits DA

problems in the latter formulation, and performs detailed analyses for a simple pursuit-evasion example

which provide insight to the interplay between the control and the estimation parts of the pursuer strategy.

We firstly introduce the equivalence between two main implementations of the DA control, one formulated

by Speyer and Jacobson [3] and the other by Green and Limebeer [4]. Secondly, we introduce and discuss

a representative case study of a Simple pursuit evasion Problem, with perfect and imperfect information

patterns. We derive the optimal solution, and propose an approximate solution. We then present some

numerical results, for the Simple Pursuit Evasion Problem using critical and non-critical values of the DA

solution.

.

II. The Equivalence between Two Implementations of the Pursuer Strategy

Consider the following system as can be found also in [3, 7]

ẋ = Ax+B1w +B2u , x (0) = x0
(1)

y = C2x+D21w (2)

z = C1x+D12u (3)

Wherex ∈ Rn is the state vector, w ∈ Rq is an exogenous disturbance, u ∈ Rsis the control input signal,

x0is an unknown initial state, y ∈ Rr is the output measurement. The matrices A,B1, B2, C1, C2, D12, D21
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are constant matrices of the appropriate dimensions, satisfying

DT
21B1 = 0, D21D

T
21 = I, DT

12C1 = 0, D12D
T
12 = I (4)

where I stands for the identity matrix. Consider also the following cost function

J = xT (tf )Xfx (tf )− γ2x0
TY0

−1x0 +
∫ tf

0

(
zT z − γ2wTw

)
dt (5)

which is to be respectively minimized and maximized by u and w. In connection with the Linear Quadratic

Differential Game (LQDG) problem, the following couple of modified Differential Riccati Equations (DRE)

plays important role

−Ẋ = ÂT
2 X +XA+ C1

TC1
(6)

Ẏ = Â1Y + Y AT +B1B1
T (7)

where

Â1
∆
= A+ γ−2Y C1

TC1 − Y C2
TC2

(8)

Â2
∆
= A+ γ−2B1B1

TX −B2B2
TX (9)

Also a third DRE, the solution of which is denominated by Z is known to be related to X and Y, by

Z =
(
I − γ−2Y X

)−1
Y (10)

The LQDG literature presents the following solution to the above measurement feedback problem where

w can take any full information strategy (i.e. with access to-x ), whereas u has access only to the noisy

measurement y. The following solution has been found in [3]

˙̂x1 = Ā1x̂1 + B̄1y (11)

u = C̄1x̂1
(12)

where

Ā1 = Â1 −B2B2
TX
(
I − γ−2Y X

)−1 (13)

B̄1 = Y C2
T (14)

3



C̄1 = −B2
TX
(
I − γ−2Y X

)−1 (15)

Another solution appears in [4] which generally serves the control community

˙̂x2 = Ā2x̂2 + B̄2y (16)

u = C̄2x̂2
(17)

where

Ā2 = Â2 − ZC2
TC2

(18)

B̄2 = ZC2
T (19)

C̄2 = −B2
TX (20)

In [3] the two solutions have been shown to coincide in the finite time varying case. Our aim is to show that,

as could be expected, the solutions are equivalent. We use here a somewhat different approach which applies

a similarity transformation between these two implementations. To this end, consider T > 0 , such that

x̂2 = T−1x̂1
(21)

We readily obtain using the following identity, (22) that the two implementations are equivalent.

dT−1

dt
≡ −T−1Ṫ T−1 (22)

Therefore, we seek for T > 0 , so that

Ā1 = TĀ2T
−1 + Ṫ T−1 (23)

B̄1 = TB̄2
(24)

C̄1 = C̄2T
−1 (25)

We next intend to show that T = I − γ−2Y X satisfies the above relation. Indeed,

C̄1 = −B2
TX
(
I − γ−2Y X

)−1
= C̄2T

−1 (26)
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B̄1 = Y C2
T = TZC2

T =
(
I − γ−2Y X

)
ZC2

T = TB̄2
(27)

It, therefore, remains to establish the relation between Ā1 and Ā2 . To this end, note that using the above

definition of T we have

Ā1 = Â1 −B2B2
TXT−1 (28)

Ā2 = Â2 − ZC2
TC2

(29)

From (23) we have to show that

Ā1T = TĀ2 + Ṫ (30)

In other words,

Â1T −B2B2
TX = TÂ2 − Y C2

TC2 + Ṫ (31)

where we have used the relation TZ=Y. The expression for transformation derivative is given by

Ṫ = −γ−2Ẏ X − γ−2Y Ẋ (32)

Substitute (32) in (31) and using the DRE’s of (6) , (7) yield the following:

L
∆
= Â1 − γ−2

(
Ẏ −B1B1

T − Y AT
)
X −B2B2

TX (33)

R
∆
= Â2 − γ−2Y

(
−Ẋ − C1

TC1 −ATX
)
− Y C2

TC2 − γ−2Ẏ X − γ−2Y Ẋ (34)

Finally, substitute Â1, Â2 and collecting terms, we readily find that L=R as required, thus completing the

proof of similarity based equivalence.

Note: One may choose the initial condition, and use a trivial transformation between the two implemen-

tations, in order to achieve this equivalency. As a result, we can see easily the equivalence between the two

controls

u1 = C̄1x̂1 = −B2
TX
(
I − γ−2Y X

)−1
x̂1

(35)

u2 = C̄2x̂2 = −B2
TXx̂2

(36)

x̂2 = T−1x̂1
(37)
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T = I − γ−2Y X (38)

u2 = −B2
TXT−1x̂1 = −B2

TX
(
I − γ−2Y X

)−1
x̂1

(39)

u1 ≡ u2
(40)

.

III. Special Case-The Simple Pursuit Evasion Problem

Consider two players, A and B, where A (the pursuer) wants to hit B (the evader). In order to accomplish

this mission, A directly controls its heading angle α, trying to navigate toward B. On the other hand, B tries

to evade from A, and does that by directly controlling its heading angle β.

Assumptions:

-Two dimensional problem.

-The players have constant velocities: VA , VB .

-The pursuer is faster than the evader: VA > VB .

-Both players have direct control over their heading angles α � 1 and β � 1 (fast angle control which

can be neglected due to small deviations).

Fig. 1 The Simple PursuitEvasion Problem, Geometry Description

The equations of motion are

x
∆
= YB − YA

x (0) = 0
(41)

ẋ = VB sinβ − VA sinα
∆
= w + u (42)
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z = x+ v (43)

Here x ∈ R1 is the “relative separation”, z ∈ R1 is the measurement, and v ∈ R1 is an additive noise. We

can formulate the problem as Min-Max problem, where A aims to minimize the relative separation at the

terminal time, whereas B wants to maximize it.

.

3.1 Optimal Solution- Perfect Information Game

Consider first the perfect information game-formulation where there is zero measurement noise. From

(42) and (6) we get

ẋ = w + u, x(0) = 0 (44)

min
u

max
w

J (u,w) =
b

2
x2 (tf ) +

1

2

tf∫
0

(
u2 (t)− γ2w2 (t)

)
dt (45)

Ẋ (t) =
(
1− γ−2

)
X2 (t ) , X (tf ) = b (46)

The optimal strategies are given by [8]

u∗ (t) = −X (t)x (t) (47)

w∗ (t) = γ−2X (t)x (t) (48)

X (t) =
1

(1− γ−2) (tf − t) + 1/b
(49)

Note that γ > 1 guarantees a positive definite X (t) ∀t . One obtains the linear control feedbacks (players’

strategies) as follows

u∗ = − 1

(1− γ−2) (tf − t) + 1/b
x (t) (50)

w∗ = γ−2 1

(1− γ−2) (tf − t) + 1/b
x (t) (51)

Note that by letting b→∞, γ →∞ , we get a simple Collision Course Guidance (CCG) Law

u∗ = − 1

(tf − t)
x (t) (52)

w∗ = 0 (53)
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3.2 Optimal Solution- Imperfect Information Game

Consider imperfect information game such that there is a non-zero noise, v, added the pursuer’s mea-

surements. x(t0) is an unknown initial state. From (5) we get

max
w

min
u
J = −1

2
γ2Y0

−1x0
2 +

1

2
bxf

2 +
1

2

tf∫
t0

(
u2 − γ2

(
w2 + V −1v2

))
dt (54)

ẋ = u+ w (55)

z = x+ v (56)

Notice that by adding a weight V −1 to the quadratic term of v (in Eq. (5) the noise was normalized by

V −1). From (12) and (15), the pursuer optimal control is given by

u∗ = − X

1− γ−2Y X
x̂ (57)

where we denote the estimated state feedback gain by

Λ
∆
= − X

1− γ−2Y X
= − 1

X−1 − γ−2Y
(58)

and where (6) for our case now is given by

X (tf ) = b (59)

Ẋ = X2
(
1− γ−2

) (60)

X (t) =
1

(1− γ−2) (tf − t) + 1/b
(61)

where the estimation Riccati equation for Y(t) in our case then reads

Ẏ = AY + Y AT +DDT − Y HTV −1HY (62)

where

A = 0, D = 1, H = 1 (63)

DRE for Y(t) can be written simplicity as

Ẏ = 1− Y 2V −1

Y (0) = Y0

(64)
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The steady state value is given by

0 = 1− Y 2V −1

→ Y 2 = V
(65)

where the solution to the DRE can be found in [9]

Y (t) =
√
V +

2
√
V(

Y0 +
√
V

Y0 −
√
V

)
e

2t√
V − 1

(66)

One can notice that in the steady state, Yss =
√
V . This result coincides with the Kalman Filter (KF)

solution. Finally, the gain is given by

Λ =
−1

(1− γ−2) (tf − t) + 1/b− γ−2
√
V − γ−2 · 2

√
V(

Y0 +
√
V

Y0 −
√
V

)
e

2t√
V − 1

(67)

where

u∗ = Λx̂, x̂ (t0) = 0 (68)

˙̂x (t) = Λx̂+ Y V −1 (z − x̂) (69)

For optimality, we demand the following three conditions:

1. Solution to DRE, Y(t), exists ∀t ∈ [t0, tf ] .

2. Solution to DRE, X(t), exists ∀t ∈ [t0, tf ] .

3. The Spectral Radius Condition (SRC): 1− γ−2Y X > 0 ∀t ∈ [t0, tf ] .

For the described case, it results in the following inequalities:

√
V +

2
√
V(

Y0 +
√
V

Y0 −
√
V

)
e

2t√
V − 1

> 0
(70)

(
1− γ−2

)
(tf − t) + 1/b > 0 (71)

(
1− γ−2

)
(tf − t) + 1/b− γ−2

√
V − γ−2 · 2

√
V(

Y0 +
√
V

Y0 −
√
V

)
e

2t√
V − 1

> 0
(72)
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The conditions can be summarized by the following expression

(
1− γ−2

)
(tf − t) + 1/b > γ−2

√
V + γ−2 · 2

√
V(

Y0 +
√
V

Y0 −
√
V

)
e

2t√
V − 1

> 0
(73)

We can get a lower bound for γ2 as follows

γ2 >

√
V + (tf − t)

1/b+ (tf − t)
+

2
√
V(

Y0 +
√
V

Y0 −
√
V

)
e

2t√
V − 1

·
(

1

1/b+ (tf − t)

)
(74)

.

IV. Approximation using Steady State LKF

Taking the steady state solution for Y(t)

Yss =
√
V (75)

From that, one can approximate the expression of the gain to be as following:

Λ̃ =
−1

(1− γ−2) (tf − t) + 1/b− γ−2
√
V

(76)

This expression holds after a short transient of Y, for sufficiently small V (see eq. (67)). Control and

estimate equations are obtained

u∗ = − 1

(1− γ−2) (tf − t) + 1/b− γ−2
√
V
x̂ (77)

˙̂x (t) =

(
Λ̃− 1√

V

)
x̂+

1√
V
z (78)

In Fig. 2, we run two simulations for the same scenario, one with the approximated gain and one with the

exact gain. The simulation parameters are

b = 50, V = 1
[
m2
]
, γ2 = 50, Y0 = 10

[
m2
]

One can observe the fast convergence of the approximate to the exact gain.

We can investigate now the approximate gain expression (76). Let γc2 be the minimum value of γ2 such

that the solution to our problem exists, satisfying the three conditions of the last paragraph. The gain (76)

must hold for all t ∈ [t0, tf ], and in particular for t = tf . By substituting tf , the gain reduces to

Λ̃ (tf ) = − 1

1/b− γ−2
√
V

(79)

In order to meet the third optimally condition (SRC), the following inequality must hold

1/b− γ−2
√
V > 0 (80)
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Fig. 2 The Convergence in Order to Justify the Approximated Gain.

Notice that if (80) does not hold, then (67) is also violated (under our approximation) for sufficiently small

(tf − t). From the last inequality we can get a lower bound for γ2, as follows

γ2 > b
√
V (81)

We got the critical value for the DA ratio

(
γc

2
)

1

∆
= b
√
V (82)
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From the second inequality, we still require

(
γc

2
)

2

∆
= 1 (83)

A generalization of the last two results yields γc2 = max
{
b
√
V , 1

}
. Under this approximation, we can

examine the gain behavior with respect to the noise magnitude V. From exploring (76), one can notice that

as the noise magnitude gets higher, the difference between the positive and negative values in the denominator

reduces. As a result, the gain grows. This will always be the case when we fix γ2 to some sufficiently large

value γ2 > γc
2 , and we keep changing the noise term V (provided that our fixed γ2 is always greater than

b
√
V ). On the other hand, using the critical value of γ2 = γc

2 , readjusting it for each V by (82), one gets

Λ̃†
∆
= − 1(

1− 1

b
√
V

)
(tf − t)

(84)

Notice the opposite behavior of the gain with the noise magnitude: as the noise magnitude gets higher, the

gain gets lower. For this case, the optimal control and the estimate equation are given by

u∗ = Λ̃†x̂ = − 1(
1− 1

b
√
V

)
(tf − t)

x̂
(85)

˙̂x (t) =

(
Λ̃† − 1√

V

)
x̂+

1√
V
z (86)

We may consider the following two limit cases∣∣∣Λ̃∣∣∣∗ ∆
= lim

b→∞

∣∣∣Λ̃∣∣∣ = lim
V→∞

∣∣∣Λ̃∣∣∣ =
1

(tf − t)
(87)

We get that the last gains are equivalent to the perfect information case (CCG).

V. Numerical Results

The SRC entails

Ω
∆
= 1− γ−2Y (t) ·X (t) (88)

Ωmin = 1− γc−2Y (tc) ·X (tc) (89)

Ωmin = 0⇒ 1− γc−2Y (tc) ·X (tc) = 0 (90)

γc
2 = Y (tc) ·X (tc) (91)
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In practice, it is not recommended taking the minimum value, and a safety margin from singularity should

be considered. We choose Ωmin = 0.1 . To demonstrate the results, we run a simulation using a Gaussian

White Noise (GWN) with different values for the standard deviation η. The value of V is adjusted to η by

V = η2 . The target performs various maneuvers. The weight of the terminal relative separation (the miss

distance) is fixed to b=50. For each case, we will examine two strategies: the first with a fixed γ and the

second with a minimal γ (up to Ωmin = 0.1 ). Typical state history and control gains are shown for each

case, for the minimal γ on the left and for a fixed γ on the right. The fixed γ has been chosen as the larger

of the two γ ’s. Monte Carlo results with 500 runs are given in tables (below the gains) for the main two

statistical moments of the miss distance and the control effort. Four cases were simulated for the target

speed: Case #1 with constant speed of 3 [m/s], Case #2 with varying speed of 3sin(5t) [m/s], Case #3 is

similar to Case #1 but with different noise level and Case #4 with bang-bang maneuver at t=1.5[s] where

at the beginning the target stays at rest and then moving with constant speed of 3 [m/s]. The results are

given in Tables 1-4 and Figures 3-6. One can observe that, when the control is designed with a fixed value

for γ, the gain grows as the noise level grows. However, when we consider the near-critical DA value, the

gain is reduced as the noise level grows, which is the more intuitive result. For all case we achieve a lower

miss-distance with the near-critical DA values. However, the control effort sometimes increases (e.g. Case

2).

Table 1 Case 1, MC with 500 iterations

η[m] γ E [x (tf )] σx(tf ) E [ueff ] σueff

0.1 2.28 0.34 0.19 23.2 2.49

0.1 3.20 0.46 0.19 27.5 2.21

0.2 3.20 0.63 0.30 23.8 3.77

Table 2 Case 2, MC with 500 iterations

η[m] γ E [x (tf )] σx(tf ) E [ueff ] σueff

0.1 2.28 0.27 0.17 3.38 1.56

0.1 3.20 0.33 0.17 1.13 0.97

0.2 3.20 0.49 0.27 1.94 1.41

.
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Fig. 3 Case #1

Fig. 4 Case #2

Fig. 5 Case #3
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Table 3 Case 3, MC with 500 iterations

η[m] γ E [x (tf )] σx(tf ) E [ueff ] σueff

0.05 1.62 0.18 0.12 23.0 1.37

0.05 5.04 0.44 0.11 22.7 1.25

0.50 5.04 1.48 0.45 26.1 5.15

Table 4 Case 4, MC with 500 iterations

η[m] γ E [x (tf )] σx(tf ) E [ueff ] σueff

0.05 1.62 0.18 0.12 10.7 1.38

0.05 5.04 0.38 0.12 13.0 1.18

0.50 5.04 1.49 0.51 4.72 4.12

Fig. 6 Case #4
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VI. Conclusion

The problem of DA with imperfect information pattern has been revisited. First the equivalence between

the two main DA control solution formulations was established for the finite-time horizon case. Then,

a representative case were introduced and solved in closed form. Numerical simulations demonstrate the

advantage of using the critical value of DA ratio over a fixed DA ratio in obtaining smaller miss distances

at the possible expanse of larger control effort. Thus, when the control is cheap one should use the minimal

values, whereas for limited control systems, higher DA ratio may be used. Although we focused in simple

guidance problems, these problems seem to capture some of the main characteristics of problems of higher

complexity.
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