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Abstract Data-driven controller design methods allow a fast tuning of controller
parameters directly from data, relying on limited prior knowledge of the plant dy-
namics. In this paper, the problem of tuning the attitude control system of a multiro-
tor UAV is tackled and a data-driven approach is proposed. With respect to previous
work, in this paper data collected in flight, during closed-loop experiments, is used
to tune the controller gains. Furthermore, the simultaneous tuning of roll and pitch
attitude control loops is demonstrated, thus paving the way to MIMO data-driven
attitude control design. The results, based on experimental work carried out on a
quadrotor UAV, show that a performance level comparable to that of model-based
methods can be achieved.

1 Introduction

Small-scale Unmanned Aerial Vehicles (UAVs), and in particular multirotor ones,
have been studied extensively in view of the great potential for a large number of ap-
plications. For most problems of practical interest, requirements in terms of pointing
and positioning performance require a careful tuning of the control laws. While non-
linear control design approaches have been considered in the literature (see, e.g., [1]

for a recent survey), for civil applications such as surveillance, mapping, video and

Angelo Zangarini
Politecnico di Milano, e-mail: angelo.zangarini@mail.polimi.it

Davide Invernizzi
Politecnico di Milano, e-mail: davide.invernizzi@polimi.it

Pietro Panizza
Politecnico di Milano, e-mail: pietro.panizza@polimi.it

Marco Lovera
Politecnico di Milano, e-mail: marco.lovera@polimi.it

1



2 A. Zangarini, D. Invernizzi, P. Panizza, M. Lovera

photography linear controllers are usually adopted. In these settings, considering
also that hover and near-hover operations are representative conditions, cascaded
PID laws are usually employed for attitude control thanks to their inherent relia-
bility and ease of implementation. As far as controller tuning is concerned, model-
based methods suffer from the fact that the mathematical modelling of quadrotors
is particularly challenging due to the non-trivial characterization of the aerodynam-
ics and of the actuators and sensors dynamics (see [2]). For this reason data-driven
tuning methods, which have been developed in the last two decades in the control
community, offer an interesting alternative. These control design tools are espe-
cially appealing when a priori knowledge about the plant model is limited, when an
accurate modeling of the system is too expensive or when fast deployment of the
control system is an important requirement, since they allow the direct tuning of the
controller parameters from experimental input-output data. Among the data-driven
methods available in the literature, a coarse classification can be made between it-
erative (e.g., the Iterative Feedback Tuning (IFT) [3]) and single-shot (non-iterative)
methods (e.g., the Virtual Reference Feedback Tuning (VRFT) [4], the Correlation-
Based Tuning (CbT) [5,6]). Non-iterative methods are particularly attractive for a fast
re-tuning of the controller when the plant performance is reduced (e.g., components
aging) and/or operating conditions change (e.g., different payloads, environment).
Recently ( [7]) the VRFT algorithm has been considered to tune the attitude con-
troller parameters of a variable-pitch quadrotor, based on data collected in indoor
experiments on a single degree-of-freedom test-bed. The results have shown im-
provements in the tracking and disturbance rejection capabilities compared to those
obtained with a manual tuning. Furthermore, comparable results with respect to a
model-based structured H∞ synthesis ( [8]), made data-driven methods a promising
tool for this kind of applications. In particular, an extension of VRFT allowing the
direct tuning of a cascade controller configuration with a single set of input-output
data, following the precedure outlined for the VRFT (see [9]), has been employed.
The possibility of tuning the control laws directly from flight-test data has been sub-
sequently explored in [10], as this, among other things, would pave the way to the
design and tuning of MIMO attitude controllers. Experiments for the tuning of atti-
tude controllers however can be executed safely only in closed-loop conditions. In
view of this, in this paper a closed-loop approach to data-driven tuning of the atti-
tude control laws for a multirotor UAV is presented. With respect to previous work,
the pitch and roll axes are tuned in a single experiment. The achievable performance
is illustrated by means of experimental results obtained on a small-scale quadrotor.

The paper is organized as follows. The data-driven framework is presented in
Section 2. In Section 3.1 the considered quadrotor platform and its controller ar-
chitecture are introduced in detail. Finally, simulation and experimental results are
presented and discussed in Section 3.3 and 3.4 respectively.
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2 Data-driven control law design

2.1 VRFT with open-loop data

Consider a linear time-invariant discrete-time system G(z), where z denotes the for-
ward time-shift unit (i.e., zx(t) = x(t +1)), a parametrized controller class C (θ) =
{C(z,θ),θ ∈ Rn}, and a given target closed-loop behaviour M(z). The control aim
of data-driven methods is the minimization of the weighted L2-norm of the mis-
match between M(z) and the actual closed-loop system:

JMR(θ) =

∥∥∥∥∥
(

G(z)C(z,θ)
1+G(z)C(z,θ)

−M(z)

)
W (z)

∥∥∥∥∥
2

2

, (1)

where W (z) is a weighting function chosen by the user. In data-driven approaches
the model-reference problem (1) is solved with limited knowledge of the system and
using only a set of available measurements dN = {u(t),y(t)}t=1..N , where N is the
length of the data-set.

The main idea of VRFT can be described as follows. Consider the reference
signal r(t) that would feed the system in closed-loop operation when the closed-loop
model is M(z) and the output is the measured y(t). Such a signal is called virtual
reference and can be computed off-line from the output data as r(t) = M−1(z)y(t).
A good controller (making the closed-loop as close as possible to M(z)) is then the
one that produces the input sequence of the experiment u(t) when it is fed by the
error signal e(t) = r(t)− y(t).

Formally, the cost criterion minimized by the VRFT algorithm is the following:

JN
V R(θ) =

1
N

N

∑
t=1

(uL(t)−C(z,θ)eL(t))
2 , (2)

where uL(t) and eL(t) are suitably filtered versions of u(t) and e(t). The filter L(z) is
chosen such that the cost function (2) is a local approximation of the criterion (1) in
the neighborhood of the minimum point ( [4]). Recent advances on the VRFT method
can be found, e.g., in [11,12,13], while application studies are available, e.g., in [14,15].

Remark 1. Both VRFT and CbT have been extended to deal with multiple nested
loops architectures in [9,16]. Consider the cascade control scheme in Figure 1, given
two reference models Mi(z) and Mo(z), for the inner loop and the outer loop respec-
tively, and consider two families of linear proper controllers Ci(Θi)= {Ci(z,Θi) , Θi ∈ Rn

i }
and Co(Θo)= {Co(z,Θo) , Θo ∈ Rn

o} and the set of data DN = {u(t),yi(t),yo(t)}t=1,...,N
being u(t) the control variable, yi(t) the output of the inner loop, yo(t) the output of
the outer loop. The inner controller can be tuned by applying VRFT or CbT while
for the outer controller the approach needs to be different, as the input of the system
to control is the reference ri(t), that is not available in the dataset, since measure-
ments are collected during open-loop operation. Nevertheless, the reference signal
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ri(t) can be derived as follows: once Ci(z,Θi) is fixed, the input of the inner loop can
be calculated as ri(t) = ei(t)+ yi(t), where the tracking error comes from the result
of the inner design: ei(t) = C−1

i (z,Θi)u(t). With such a choice, ri(t) is exactly the
signal that would feed the inner loop in closed-loop working conditions when the
output is yi(t). Then, the outer controller can be easily found by using the set of I/O
data Do

N = {ri(t),yo(t)}t=1,...,N .

Co(z) Ci(z) G(z) G′(z)
u yiro eo ri ei yo

−−

Fig. 1. Cascade control scheme with two nested loops.

2.2 VRFT with closed-loop data

If the test to collect data is performed in flight, then for safety reasons the data
must be collected in closed-loop, allowing the user to control the system also during
the experiment. Furthermore, closed-loop tests allow to perform the experiment to
collect the data without exploiting a test-bed and without modifying the system, thus
significantly simplifying the tuning process.

As illustrated in Figure 2, the excitation input ū is added to the output of the
controller Cd(z). Cd(z) is a stabilising controller adopted to carry out the in-flight
test. The user can act on the set-point r to control the behaviour of the system also
during the experiment.

Cd P
ur e + y + ỹ

−

ū

+

ν

+

Fig. 2. VRFT experiment in closed-loop operation.

The standard VRFT method cannot be applied to obtain a new controller exploit-
ing the measurements dN = {u(t), ỹ(t)}t=1,...,N : specific problems arise when the
instrumental variable is constructed because u and ν are now correlated. Indeed, the
user cannot directly act on the input of the plant as in the standard VRFT, but he can
operate on the setpoint r and on the excitation input ū, and the input of the plant is
now affected by this action:
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u(t) =
1

1+Cd(z)P(z)
ū(t)+

Cd(z)
1+Cd(z)P(z)

(r(t)−ν(t)) . (3)

For the sake of simplicity, the assumption that the user does not provide a setpoint
during the experiment can be made (r(t) = 0, ∀ t) and (3) can be rewritten as:

u(t) =
1

1+Cd(z)P(z)
ū(t)− Cd(z)

1+Cd(z)P(z)
ν(t). (4)

Using (4) to build the instrumental variable leads to a biased controller parameter
vector since the instrumental variable is no longer uncorrelated with the noise ν(t).
Indeed, if the instrumental variable is built as ŷ(t) = P̂(z)u(t), then using (4) we get

ŷ(t) = P̂(z)
(

1
1+Cd(z)P(z)

ū(t)− Cd(z)
1+Cd(z)P(z)

ν(t)
)
.

Following [4], the instrumental variable is given by

ζ (t) = β (z)L(z)
(
M(z)−1−1

)
ŷ(t)

= β (z)L(z)
(
M(z)−1−1

)
P̂(z)

(
1

1+Cd(z)P(z)
ū(t)− Cd(z)

1+Cd(z)P(z)
ν(t)

)
.

The previous equation clearly shows the correlation between ζ (t) and ν(t). To
solve this problem a different instrumental variable must be chosen, to ensure cor-
relation with the regression variable and incorrelation with the noise. A detailed
overview on the choice of the instrumental variable can be found in [10].

2.3 Multivariable extension

The VRFT algorithm can be extended to the multivariable case [17], where the initial
formulation is the same, but an additional step is introduced. A different instrumen-
tal variable method is employed, the extended instrumental variable (EIV), which is
easily implemented for multivariable problems [18].

The discrete MIMO LTI problem requires a redefinition of the state matrices
and transfer functions, where u ∈ Rnu , y,r ∈ Rny , G(z) ∈ Rny×nu , C(z) ∈ Rnu×ny ,
T (z) ∈ Rny×ny . The model reference problem is then formulated with respect to the
input complementary sensitivity T (z), thus the reference model is such that M(z) ∈
Rny×ny .

By analysing the frequency-wise counterpart of the cost function defined in (2)
and the model reference one in Equation (1), the filters which make them equivalent
can be defined as:

Lu(z) = M(z)Φ−1/2
uu (z), Le =C−1(z,θ)M(z), Ly =C(z,θ)Φ−1/2

uu (z), (5)
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where Φuu is the power spectral density of the input u. These filters however require
the knowledge of the controller, turning the problem into a nonlinear one. A convex
approximation of the problem can be achieved by making the following assump-
tions:

1. the sensitivity function S(z) = I−M(z) is close to the closed-loop sensitivity
function for θ = θ̂ ;

2. the controller family C(z,θ) can be linearly parametrized with the vectors of
parameters θ ∈ Rn, such that C (θ) =

{
C(z,θ) = β T (z)θ

}
.

Finally, by replacing these assumptions in Equation (1), the cost function becomes:

JMR(θ) =
∥∥M(z)− (I−M(z))β

T (z)θ
∥∥2

2 . (6)

By choosing the above filters as:

Lu(z) = Le(z) = L(z) = M(z)andLy(z) = I, (7)

the cost function becomes linear in the parameter vector, and is equivalent to the
approximated model reference cost function shown in Equation (6).

It is noted that the filters for the MIMO extension differ from the ones derived
for the SISO problem, as obtained in [4]. This is due to Assumption 1 being used at
the beginning of the derivation, obtaining the filter for the convex model reference
problem instead of deriving the optimal filter first for the original model reference
problem.

The structure of the regressor vector ϕ(k) must be defined. Another parametriza-
tion of the controller class is introduced for the MIMO problem, such that:

u(k) = u(k−1)+
n

∑
i=0

Bie(k− i) (8)

= u(k−1)+B0e(k)+B1e(k−1)+ · · ·+Bne(k−n), (9)

where Bi ∈Rnu×ny , i = 1, . . . ,n. The linearly parametrized PID class can be obtained
by exploiting the properties of the Kronecker product, denoted with ⊗, as follows:

u(k) = u(k−1)+
n

∑
i=0

Bie(k− i) = u(k−1)+ϕ
T (k)θ (10)

n

∑
i=0

Bie(k− i) =
[
eT (k)⊗ I, · · · ,eT (k−n)⊗ I

]
vec
(
[B0, · · · ,Bn]

)
= ϕ

T (k)θ ,

(11)

where:

θ = vec
(
[B0, · · ·Bn]

)
(12)

ϕ(k) =
[
eT (k)⊗ I, · · · ,eT (k−n)⊗ I

]T
. (13)
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The definition of the regressor ϕ and the parameter vector θ ∈Rnθ ,nθ = n×nu×ny
in Equation (10) can be further manipulated obtaining:

u(z) =
1

1− z−1 ϕ
T (z)θ =

z
z−1

ϕ
T (z)θ = ϕ

T
F (z)θ . (14)

Now the Extended Instrumental Variable (EIV) is added to develop a new cost func-
tion. Unlike the SISO case, the length of the instrumental variable is not the same
as the length of the input vector. This is due to the fact that it is not built using data
from another experiment, as presented in Section 2.2. In the case of EIV, the same
control input is used with a window of length ± l:

ζ (k) =


u(k+ l)

...
u(k− l)

 ζL(k) =


uL(k+ l)

...
uL(k− l)

 . (15)

Said instrumental variable can now be used to define a decorrelation cost function,
as described in [18]:

JD(θ) = (r−Rθ)TŴ−1(r−Rθ) (16)

R =
1
N

N

∑
k=1

ζL(k)⊗ϕL(k) (17)

r =
1
N

N

∑
k=1

ζL(k)⊗uL(k), (18)

where ϕL is the regressor defined from signals filtered with (7) and Ŵ is a posi-
tive semi-definite weight, optimally a consistent estimate of the residual covariance
matrix W̄ :

W̄ = E
[
(r−Rθ)(r−Rθ)T

]
. (19)

The decorrelation function in the absence of noise, for large windows l, leads
asymptotically to Rθ − r = 0. Thus, the minima of the decorrelation cost function
(16) are equivalent to the minima of the virtual reference cost function (2), and are
given by:

θ̂ = argmin
θ

JD(θ) =
(
RTW−1R

)−1 (
RTW−1r

)
. (20)

The length of the window for the EIV method represents a tuning knob of the algo-
rithm, however an arbitrarily large number can be used.
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3 Results

3.1 Multirotor platform

The considered multirotor platform, called ADAM-0 (see Figure 3), is a fixed-pitch
quadrotor with the following characteristics:

• Take-Off Weight (TOW): approximately 1450 grams;
• Battery: 4S Li-Po 4000 mAh;
• Flight time: 12 minutes;
• Frame dimensions (footprint): 500 mm (excluding rotors).

As is common practice in the multirotor literature, as far as linear controllers are
concerned symmetry arguments are used to reduce the attitude control problem to a
set of three separate problems for, respectively, the pitch, roll and yaw axes. In this
work the pitch and roll attitude controllers of the ADAM-0 quadrotor are first tuned
using the SISO algorithm with individual data.

Fig. 3. The ADAM-0 UAV.

3.2 Controller structure

Concerning the control architecture, the ADAM-0 platform adopts an attitude con-
trol scheme based on decoupled cascaded PID loops for the pitch, roll and yaw axes,
running at 250 Hz. Focusing on the pitch axis, the outer loop (measured angle ϑ ,
set-point ϑ o) is a P controller, while the inner controller is a complete PID with
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an additional feed-forward term. More specifically, the feed-forward gain is directly
computed on the pitch angle set-point and the derivative action of the inner loop is
computed starting from the pitch rate q and not from the pitch angular rate error (see
the block diagram in Figure 4, where the pitch control loop is represented).

This structure can be converted into the regressor form in equation (10) in a
straightforward step, resulting in:

u(k) = u(k−1)+
ne

∑
i=0

Bie(k− i)+
ny

∑
j=0

B jy(k− j)+
nr

∑
m=0

Bmr(k−m) (21)

= u(k−1)+ϕ
T (k)θ (22)

The default parameters of the controller are shown in Table 1, which will be used
for the experiment that follow.

KPo KPi

KFFi

KIiTs
z−1

KDi
Ts

z−1
z

UAV pitch
dynamics

ϑ o qo +
+

+ −

ϑ

q−−

M+

Fig. 4. Block diagram of the pitch control system, with a feed-forward gain and a
derivative action based on angular rate feedback.

Table 1. ADAM-0: default controller parameters.

KO
P KI

FF KI
P KI

I KI
D[

6.5 0
0 6.5

] [
0 0
0 0

] [
0.15 0

0 0.15

] [
0.05 0

0 0.05

] [
0.003 0

0 0.003

]

Until now only the pitch attitude controller was considered. As is common prac-
tice in multirotor UAVs, the roll Degree of Freedom (DoF) is controlled with the
same regulator scheme in Figure 4 thanks to the geometrical symmetry of the
quadrotor. Obviously, the involved signals are different: the user provides the roll
setpoint φ o(t) and the proportional outer controller generates the roll angular rate
reference signal. The inner regulator, starting from this information, computes the
roll pitch moment L (t).

This decoupled architecture for the pitch and roll axes is justified by the fact that
if the body axes are principal axes of inertia, then when the quadrotor is in near-
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hovering conditions the roll and pitch DoFs could be assumed decoupled. This, in
turn, implies that the pitch and the roll can be tuned independently. If, however, the
system does not have decoupled attitude dynamics between the DoFs, the tuning
problem for the different DoFs is coupled and the corresponding controllers must
be tuned at the same time.

Amongst data-driven techniques, the Virtual Reference Feedback Tuning (VRFT)
method has been considered. As described in Section 2, this method is not limited
to Single Input Single Output (SISO) control systems and VRFT can deal also with
Multiple Input Multiple Output (MIMO) regulators.

In this section only the inner loop controllers, based on the roll and pitch angular
feedbacks, are taken into account. In particular the considered controller has four
inputs (pitch and roll angular setpoints, and pitch and roll angular rate measure-
ments) and two outputs (pitch and roll moments). Internally it has four independent
regulators as displayed in Figure 4: one for the pitch DoF, one for the roll DoF and
two for the coupled dynamics. In this case the controller parameters are not scalar
but they are 2× 2 matrices: on the main diagonal there are the parameters for the
pitch and the roll DoF controllers and on the secondary diagonal the parameters of
the coupled dynamics controllers.

3.3 Simulation results

A complete Simulink ADAM-0 nonlinear simulator has been used to validate the
results of the algorithm. The simulator is able to replicate the attitude dynamics un-
der feedback control on all axes. An artificial inertial coupling has been introduced,
where the off-diagonal terms represent 10% of the diagonal terms. These terms will
introduce gyroscopic effects since the pitch and roll axis are no longer principal axes
of inertia.

Simulation data is collected in closed-loop in order to create the input and output
dataset required for the VRFT algorithm. Two Pseudo Random Binary Sequence
(PRBS) excitation signals, one for the pitching moment and one for the rolling
moment, are applied consecutively. The input ū(t) = {L̄ ,M̄ }T is injected in the
system as shown in Figure 2. The two signals are different but they share the same
PRBS parameters (signal amplitude and min/max switching interval). In this case,
for each axis, a total excitation time of 20 s has been used, with a frequency of 50
rad/s and an amplitude of 0.15. The latter is a non-dimensional amplitude, referred
to the maximum moment that can be applied.

As illustrated in Section 2.2, an initial controller C0(z) that stabilizes the system
must be available, with parameters collected in Table 1.
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Reference models

For both the pitch and roll inner loops, the reference model is a second order model,
with a desired bandwidth and damping ratio of 20 rad/s and 0.4 respectively:

Mi(z) =
0.003131z+0.003065
z2−1.932z+0.9380

.

In this specific case no filtering action was needed, thus the weighting function has
been defined as Wi(z) = I. Therefore, considering the MIMO case the reference
models are 2×2 matrices of transfer functions, with the transfer function Mi(z) on
the main diagonal and zeros on the secondary diagonal, requiring full decoupling.

Similarly, requirements have been set for the outer loop, once again a second or-
der model, and a slower response. The desired bandwidth is 10 rad/s with a damping
ratio of 0.7:

Mo(z) =
0.0007852z+0.0007706

z2−1.9440z+0.9455
.

Controller parameters comparison

Results from the SISO algorithm applied to both pitch and roll data are then com-
pared to the full MIMO formulation shown in Section 2.3, for the given set of ref-
erence models for the inner and outer dynamics. Noise has been introduced in the
system, modelled as white noise with a standard deviation obtained from hovering
endurance tests to account for the uncertainty of the state estimates.

The resulting parameters of both algorithms are illustrated in Table 2. It is showed
that the diagonal terms are almost the same. The gains of the outer loop P controller
feature an almost identical term on the diagonal, and the outer diagonal terms which
are smaller by two orders of magnitude. This means that the inner loop controller
is able to decouple effectively the dynamics from the attitude rate and making them
similar.

Table 2. ADAM-0: optimal controller parameters for outer and inner controllers
considering the VRFT method with closed-loop simulation data.

KO
P KI

P KI
I KI

D

MIMO
[

5.2090 0.0104
0.0114 5.1874

] [
0.1464 0.0094
0.0094 0.1275

] [
0.2630 0.0038
0.0038 0.2555

] [
0.0005 0

0 0.0004

]
SISO

[
4.6650 0

0 4.6772

] [
0.1490 0

0 0.1300

] [
0.1765 0

0 0.1807

] [
0.0001 0

0 0.0001

]

In order to compare the results, a doublet benchmark has been considered, that
is a quick consecutive variation of the attitude that has a zero mean. The doublet
period T = 0.42s and amplitude A = 22.5 deg is held constant amongst tests.
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The simulated pitch doublet is shown in Figure 5, where it is highlighted that the
full MIMO controller is able to significantly reduce the coupling effects. It can be
seen that the control effort is comparable, while achieving a better attitude tracking.

30.5 31 31.5 32 32.5
-1

0

1
MIMO
SISO
Setpoint

30.5 31 31.5 32 32.5

-10

0

10

30.5 31 31.5 32 32.5
Time [s]

-0.2

0

0.2

(a) Roll response

30.5 31 31.5 32 32.5
-20

0

20
MIMO
SISO
Setpoint

30.5 31 31.5 32 32.5

-200

0

200

30.5 31 31.5 32 32.5
Time [s]

-2

0

2

(b) Pitch response

Fig. 5. Simulation of pitch attitude doublet
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3.4 Experimental results

The experimental data is collected in the same way as presented for the simulation
result. The default controller parameters are used as the initial regulator, illustrated
in Table 1.

Figure 6a and Figure 6b show the involved signals in the data-driven tuning pro-
cedure. These signals share the same specifications of the simulated experiment in
Section 3.3. For the sake of clarity, the signals are represented in two figures but
were collected sequentially during the same flight.

Reference models

As seen in Section 3.3, the chosen reference models are second order models with
the addition of a delay. The choice of the reference model in data-driven methods
can affect the stability of the feedback system, thus it might need adjustments be-
tween tests and lead to slightly different results. In this case, the reference model
chosen for the SISO algorithm is different from the one used for the simulation and
MIMO formulation.

Table 3. Experimental data model references for the inner and outer loops.

ω [rad/s] ζ Delay
MIMO Inner loop 18 0.3 1

Outer loop 10 0.8 1
SISO Inner loop 20 0.4 3

Outer loop 10 0.7 3

Controller parameter comparison

The benchmark for the performance comparison is a doublet, with period T = 0.45s
and amplitude A = 40 deg, similarly to the simulation section. Exploiting the ref-
erence models and closed-loop experimental data, the VRFT method leads to the
parameter values reported in Table 4.

Since the doublet experiment requires the position and velocity outer feedback
loops to be disabled, experiments have been carried out manually by a pilot, leading
to difficulties in replicating the exact input and conditions. For the sake of brevity,
only one of the excitations is shown, as in this platform the results are identical.

Preliminary tests are shown in Figures 7 and 8, where the roll doublet response
shows a coupling, which in both cases is very limited, as expected. The pitch angle
variations are about ± 3deg, however they are smoother for the MIMO solution.
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54 56 58 60 62 64 66 68 70 72 74
-0.2

0

0.2

54 56 58 60 62 64 66 68 70 72 74

-100

0

100

200
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-20

0

20

54 56 58 60 62 64 66 68 70 72 74
Time [s]
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0

5

(a) Roll excitation.

88 90 92 94 96 98 100 102 104 106 108
-0.2

0

0.2

88 90 92 94 96 98 100 102 104 106 108
-200

0

200

88 90 92 94 96 98 100 102 104 106 108
-20

0

20
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Time [s]
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Fig. 6. ADAM-0: closed-loop experimental dataset used by MIMO data-driven
method.
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Table 4. ADAM-0: optimal controller parameters for outer and inner controllers
considering the VRFT method with closed-loop experimental data.

KO
P KI

P KI
I KI

D

MIMO
[

4.4484 −0.1287
0.2364 5.2220

] [
0.1187 −0.0004
0.0044 0.1252

] [
0.1749 0.0023
0.0090 0.1164

] [
0.0007 0.0001

0 0.0011

]
SISO

[
4.2505 0

0 4.2061

] [
0.1381 0

0 0.1495

] [
0.1039 0

0 0.3039

] [
0.0015 0

0 0.0027

]

Note that the regulator obtained from the MIMO algorithm leads to a quicker re-
sponse.

The MIMO controller features a quick suppression of the oscillations in the pitch
rate loop, which is able to follow the rate setpoint given from the attitude feedback
loop. Finally, the control effort on the pitch axis is reduced with respect to the SISO
controller.

Since the data-collecting experiments are conducted in near-hovering conditions,
the secondary diagonal of the parameters in Table 4 is always one or more orders
of magnitude smaller than the primary terms, confirming an almost decoupled dy-
namics between the DoFs in the quadrotor platform. The symmetry of the build is
more evident when the SISO results are analysed, since pitch and roll results are
very similar.
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Fig. 7. ADAM-0: Roll doublet experiment with SISO method parameters.
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Fig. 8. ADAM-0: Roll doublet experiment with MIMO method parameters.
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4 Conclusions

The problem of data-driven design of the attitude control law for a multirotor UAV
has been considered. The VRFT method has been extended to consider a more gen-
eral class of controllers and by allowing the closed-loop execution of data-collection
experiments on the system. Experimental results show that the in-flight tests can be
conducted in a safe way and that a satisfactory level of performance can be achieved
by using a 20 seconds data sets.

It is highlighted that the MIMO formulation of the problem allows to reduce the
effects of coupling that can arise for very aggressive manoeuvres, such as the ones
featured in the experiments, even for the case of seemingly symmetrical builds.
These couplings typically arise from a number of dynamic and aerodynamic effects
which are difficult to model, thus all situations leading to a nonlinear behaviour.
These effects make this class of synthesis methods very appealing, since almost no
assumptions on the system are made.

As with other data-driven methods, no stability constraint is enforced on the al-
gorithm, making the solution of the method reliant on the choice of a suitable ref-
erence model. The main advantages over the SISO formulation are that the instru-
mental variable parameters (model order and past/future windowing, see [10]) are not
needed, reducing the number of tuning variables. Furthermore, for one of the pos-
sible choice of instrumental variable for the SISO algorithm, the initial controller
must be known, while in the MIMO formulation it is no longer necessary. Finally,
this method allows a more general approach to the problem, removing the hypothe-
sis of symmetrical builds and decoupled dynamics.
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