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Abstract If the matching condition of uncertainties is not satisfied, robustness of 

sliding mode control becomes limited. In order to solve the unmatched problem, 

this paper presents a sliding mode controller with a combination of an optimal 

guaranteed cost controller. The model uncertainties are assumed to be norm-

bounded, but the matched condition needs not to be satisfied. The proposed sliding 

mode controller is designed to provide system invariance to disturbances and pa-

rameter variations with known bounds which are implicit in the control channel 

called matched uncertainties. In addition, the combined optimal guaranteed cost 

controller ensures the sliding motion to be robust to unmatched uncertainties by 

providing an upper bound on a given performance cost. As a result, system per-

formance degradation incurred by unmatched uncertainties is guaranteed to be less 

than the given bound otherwise the sliding motion may become unstable and/or 

performance may degrade. Conditions for the existence of guaranteed cost sliding 

mode satisfying the given constraints are derived. The performance of the pro-

posed schemes is illustrated by numerical simulations. 

1. Introduction 

The classical autopilot has been successfully employed as the design topology 

of choice during the past several years [1—3]. However, if there exist large model 

mismatches between design models and actual systems, the classical autopilot 

does not assure effective control. To improve the robustness of the classical three-

loop topology, a “neoclassic” four-loop autopilot which uses four gains instead of 

three has been presented in [2]. In reference [3], ten distinct topologies that use 

combinations of acceleration, angular rate, and first order leads have been exam-

ined to determine the best from a robustness perspective. However, their robust 

performance cannot be guaranteed without exact modeling of the uncertainty. 

Recently, sliding mode controllers which are designed for uncertainties and 

time-delay have drawn more and more attention, for example, autopilot design of 

agile missiles [4], autopilot design of aircraft [5], an integrated attitude and accel-
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eration controller for skid to turn missiles [6], and integrated guidance and control 

[7], and so on. However, if the matching condition of uncertainty (i.e., the uncer-

tainty lies in the same channel as the input) is not satisfied, robustness of sliding 

mode control becomes limited [16]. Effort has been directed towards finding a 

controller in order to guarantee robust stability under the unmatched condition. 

Coordinate transformations have been used to solve the unmatched problem [8—

9], but those approaches cause another difficulty in flight control system, because 

dynamics describing missile acceleration are non-minimum phase. 

When controlling real plants, it is desirable to design controllers which not only 

make the closed-loop systems asymptotically stable but also guarantee an ade-

quate level of performance. One approach to this problem is the guaranteed cost 

control approach [11—15]. Ricatti equation approaches for designing quadratic 

guaranteed cost controllers are presented in [11—13], and linear matrix inequality 

approaches for the design of guaranteed cost controller are formulated as convex 

optimization problem in [14—15].  

On the basis of these literatures, this paper presents a sliding mode controller 

with a combination of an optimal guaranteed cost controller. In order to solve the 

unmatched problem, the proposed sliding mode controller is designed to provide 

system invariance to disturbances and parameter variations with known bounds 

which are implicit in the control channel called matched uncertainties. In addition, 

the combined guaranteed cost control ensures sliding motion to be robust to un-

matched uncertainties by providing an upper bound on a given performance cost. 

As a result, system performance degradation incurred by unmatched uncertainties 

is guaranteed to be less than the given bound otherwise the sliding motion may 

become unstable and/or performance may degrade. Conditions for existence of the 

guaranteed cost sliding mode satisfying the given constraints are derived. The per-

formances of the proposed scheme are illustrated by numerical simulations in the 

presence of unmatched model uncertainties. 

2. Missile dynamics model with uncertainties 

The longitudinal missile dynamics, using a small angle approximation, are giv-

en as 

 ̇             

 ̇                                                                  ( ) 

The variable that is to be commanded is denoted as   , and modeled as 

                                                              ( ) 
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where   is the angle of attack,   is the pitch rate,   is the missile velocity,   is the 

fin deflection,    is the missile normal acceleration, and   ,   ,   , and    are 

the aerodynamics coefficients. Since the typical measurements available from the 

inertial measurement unit are normal acceleration    and pitch rate  , it is desira-

ble to replace the angle of attack in system state description with normal accelera-

tion as follows: 

[
 ̇ 
 ̇
 ̈

]  [

       
   

 
  
 

   
] [

  
 
 ̇
]  [

    
 
  

]  ̇                      ( ) 

The aerodynamics coefficients described by   ,   ,   , and    are dependent 

on Mach number and angle-of-attack. These parameters are usually measured 

from wind tunnel tests and these values may contain some error because of the 

imperfection of the measurements. These errors are assumed to be bounded and 

can be modeled as multiplicative uncertainties 

   (    ) ̅  

   (    ) ̅                                                      ( ) 

where  ̅  and  ̅  are the estimated nominal values of the aerodynamic coefficients 

and    represent the admissible uncertainties, and their values are assumed to have 

a norm-bounded  

‖  ‖  
 

  
                                                         ( ) 

and can be expressed as normalized forms 

   
 

  
 ̲                                                             ( ) 

where ‖ ̲ ‖   . In addition to uncertainty, time-delay is also a major source of 

instability and poor performance in actual applications. Thus, for a flight control 

system, a first order lag is considered that capture un-modeled dynamics which is 

reflected to the input of the missile dynamics. In other words, let 

 ̈   
 

 
 ̇  

 

 
 ̇                                                    ( ) 

where  ̇ is the fin rate,  ̇  is the fin rate command, and   is an uncertain delay 

with known bounds              . Under these conditions, the longitudi-
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nal missile dynamic model with uncertainties can be represented in state space 

form as follows: 

[
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or, with a simple expression, 

[
 ̇
 ̈
]  [

 ̃  ̃ 

  
 

 

] [
 
 ̇
]  [

 
 

 

]                                    (  ) 

Unfortunately, all the multiplicative uncertainties in Eq. (8a) are not implicit in 

the control channel, so all the effect of the uncertainties cannot be eliminated by 

sliding mode controller alone. In order to solve the unmatched problem, an opti-

mal guaranteed cost sliding mode controller is presented and will be highlighted in 

the next section. 

3. Optimal Guaranteed Cost Sliding Mode Control  

3.1 Sliding surface design with virtual control  

Let the sliding surface be 

  [[      ]  ] [
[

  
 
 ̇
]

 ̇

]        [  ] [
 
    

]          ( ) 

where      coefficients are selected to achieve the characteristic required from the 

system when the state variables are in sliding mode.    coefficient is computed so 

that the achieved acceleration will match the commanded acceleration.     is the 

normal acceleration command, and    is commanded output. If we regard  ̇ in Eq. 

(9) as a virtual control input      and try to design  ̇  in Eq. (8b) to bring the slid-

ing variable   to zero in finite time and then maintain the condition     for all 

future time, the system characteristics are governed by the virtual control 
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                                                       (  ) 

The sliding surface in Eq. (9) has relative degree one because the first time deriva-

tive of the sliding variable   is a function of control  ̇  

 ̇  ∑(   
  
 
)   

 

   

 ∑(   
  
 
)   

 

   

 
 

 
 ̇                       (  ) 

where                ̇             and      

        
    
 

   
                                                

                                                       

                
                                                           

                                                                             

                                                                                  

Once sliding mode is established, the state variables satisfy the condition of 

 ̇    and the equivalent control is given by 

 ̇            ̇                                                    (  ) 

Substituting the equivalent control into Eq. (8b) yields the sliding mode equation 

as 

 ̇   ̃   ̃                                                          (  ) 

It is evident from Eq. (13) that once the sliding mode is established, the uncertain 

delay   is rejected from the sliding mode equation, and the flight control system 

becomes invariant to the effect of the uncertain delay. In order to design the guar-

anteed cost virtual control     , Eq. (13) is transformed into the uncertainty pulled 

out forms, which can be rewritten as 

 ̇                                                     (  ) 

                                                                         

   ̲                                                                                
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with 
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where  and   are known constant matrices and  ̲ is unknown matrix satisfying 

 ̲  ̲   . Note that    are known bounds of uncertainties defined in Eq. (5). 

Define the performance index for the sliding motion as follows: 

  ∫ (         )
 

 

                                               (  ) 

where     is a design paramter to be determined to find the optimal guaranteed 

cost. 

 

Definition 1. For a given positive constant  , the virtual control law         of 

Eq. (10) is a robust guaranteed cost control for the system of Eq. (14), if the fol-

lowing conditions holds for all the admissible parameter uncertainties  ̲. 

1. The sliding mode equation of Eq. (14) is asymptotically stable. 

2. With the zero initial condition, the controlled output  ( ) satisfies 

‖ ‖   ‖ ‖                                                    (  ) 

where ‖ ‖  shows the standard norm in   [    ). 
3. The performance cost for the sliding mode is 

  ∫ (         )
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Lemma 1. (Strict Bounded Real Lemma) The following statements are equivalent 

1. There exists a matrix     such that 

                   

2. The Riccati equation 

                   

has a stabilizing solution    . Furthermore, if these statements hold then 

   . 

 

Theorem 1. For a given constant     and the performance cost of Eq. (15), a 

sufficient condition for the existence of guaranteed cost control         for sys-

tem of Eq. (14) is that there exists a symmetric positive definite matrix   such that 

for all admissible parameter uncertainties  ̲, the following inequality holds 

(         ̲(    ))
 
   (         ̲(    )) 

              (    )  ̲ (    )                     (  ) 

Proof. If there exists positive definite matrix   such that inequality of Eq. (17) 

holds, while the corresponding sliding mode of Eq. (14) uses the virtual control 

law        , we construct a Lyapunov function  ( ) as 

 ( )    ( )  ( )                                                  (  ) 

then  ( ) is positive definite, the derivative of  ( ) is 

 ̇( )    ( )(      ) ( )                                      (  ) 

where 

           ̲(    ) 

By inequality of Eq. (17), for all the admissible uncertainties  ̲, we get 

 ̇( )     ( )[             (    )  ̲ (    )] ( ) 

      [ 
            (    )  ̲ (    )]‖ ‖        (  ) 
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where     ( ) shows the minimum eigenvalue of matrix ( ). The obtained sliding 

mode from inequality of Eq. (20) is asymptotically stable, and Integrating Eq. (20) 

from 0 to   at both sides of inequality, and use the stability for the system, we get 

    ( )   ( )    ( )  ( )                                 (  ) 

This shows that         is a guaranteed cost control for system of Eq. (14) with 

cost bound matrix   for all admissible uncertainties. Furthermore, we have 

 ̇( )    ( )[             (    )  ̲ (    )] ( )    

By the zero initial condition, we get 

∫   ( ) ( )
 

 

     ∫   ( ) ( )
 

 

     ( )                 (  ) 

to the arbitrary     [    ) , we get the inequality ‖ ‖   ‖ ‖   , the 

proof is completed. 

Now, we present the virtual control law in terms of the solution of algebraic 

Riccati equation. 

 

Theorem 2. For the given constant     and system performance index   of Eq. 

(15), if there exists a positive definite matrix   such that the Riccati equation 

              ( 
  )    

   
 

  
     

                 (  ) 

has   as a solution and consider the equivalent control gain 

   (   )    
                                                   (  ) 

Then there exists a matrix     such that     and Eq. (24) is a guaranteed cost 

control for the sliding mode of Eq. (14) with cost matrix  . 

Proof. With the equivalent control gain of Eq. (24), inequality of Eq. (17) can be 

written as 

              ( 
  )    

   
 

  
     

   

 (
 

  
  
    ̲ (    ))

 

  (
 

  
  
    ̲(    ))          (  ) 

The above inequality holds for all the uncertainties, if 
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              ( 
  )    

   
 

  
     

                   (  ) 

By lemma 1 (Strict Bounded Real Lemma), the above inequality of Eq. (26) holds, 

if and only if there exist a stabilizing solution     such that 

            (  ( 
  )    

  
 

  
    

 )                 (  ) 

This completes the proof of the theorem. 

The guaranteed cost bound given in Eq. (21) is used as a measure of the cost as-

sociated with a control strategy. Furthermore, it is desirable to construct a control-

ler of Eq. (24) which minimizes the cost bound under the worst possible uncertain-

ty input. Note that the stabilizing solution to Riccati equation (23) will be 

monotonically decreasing with    . Hence for each value of uncertainty bound 

   , the optimal value of     will be determined to be the largest value such 

that inequality (16) is satisfied. However, to facilitate computation, we use the fol-

lowing inequality to approximate the optimal value of   instead of Eq. (17). 

     (  ( 
  )  

  
 

  
    

 )                           (  ) 

Finally,    coefficient in Eq. (9) is computed so that the achieved acceleration will 

match the commanded acceleration. The closed-loop transfer function from     to 

   in Eq. (14), when    , is 

   (    )    
 (         )

(      )(         )
                       (  ) 

To get unity control system gain, we set the Eq. (29) to unity and get 

   
      

 
                                                      (  ) 

Based on Eq. (24) and (30), the sliding surface coefficients are selected to provide 

an upper bound on a given performance cost and to guarantee the stability under 

unmatched uncertainties. 
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3.2 Sliding Mode Control Law design 

Now, the control law enforcing sliding mode in the surface     is examined. 

The control law of the following form is considered 

 ̇               ̇                                     (  ) 

where      are discontinuous state feedback gains to be determined. The addi-

tional term     is included for robustness improvement. The Lyapunov function 

is chosen as   
 

 
  , which implies  ̇    ̇. The existence condition for sliding 

mode is fulfilled if 

  ̇  ∑(   
     
 

)   

 

   

  ∑(   
     
 

)   

 

   

               (  ) 

The following result gives a condition for the discontinuous gains      to 

make the system stable. 

 

Theorem 3. The autopilot system in Eq. (31) is stable if the following condi-

tions are met 

 

   {

    ̂ ̂   ̂                          

    ̂ ̂                                       

    ̂ ̂   ̂                           

                    

   {

    ̂ ̂   ̂                          

    ̂ ̂                                     

    ̂ ̂   ̂                          

                               (  ) 

with 

       |   || ̂ |                                                     (  ) 

where the estimate  ̂ of the delay   is taken as the geometric mean of the known 

bounds,              , 

 ̂  √                                                             (  ) 

The  ̂  of the parameter    are taken so that the estimation error on    should be 

bounded by some known value   , 
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|    ̂ |                                                                (  ) 

and   √          is constant for all time. 

Proof. If        are chosen as     ̂ ̂   ̂   in accordance with the sign of    , 
then 

(   
     
 

)     (   
 ̂ ̂ 
 
)    

   ̂

 
|   |                     (  ) 

If        are also chosen as     ̂ ̂   ̂   according to the sign of    , then 

(   
     
 

)     (   
 ̂ ̂ 
 
)    
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|   |                     (  ) 

Since     ̂  (    ̂ ), where |    ̂ |    , this in turn lead to 

(   
 ̂ ̂ 
 
)     
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|   |  (    ̂  

 ̂ ̂ 
 
)     

   ̂

 
|   |           (  ) 

Thus, by choosing    to be large enough,  

       |   || ̂ |  
 

 ̂
   |

 

 ̂
  | | ̂ |                          (  ) 

We can guarantee that 

  ̇  ∑(   
     
 

)  

 

   

  ∑(   
     
 

)   

 

   

                  (  ) 

From the definition of  ,   converges to zero. 

Notice that the control law is actually not  ̇  but   , so a smooth control law is 

obtained by low pass filtering  ̇  [10]. Although the  ̇  shows chattering phenom-

enon because of a switching function, the    applied to the real plant does not 

show the chattering phenomenon.  
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4. Numerical Simulation 

Consider the uncertain flight control system described by the state equations 

[
 ̇
 ̇   

]  [
 (    )   (    )

  
 

 

] [
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where   is an uncertain delay but with known bounds              ,    are 

matrices of uncertain parameters with the given bound ‖  ‖  
 

 
. We wish to 

construct an optimal guaranteed cost sliding mode control for this system which 

minimizes the bound on the cost index 

  ∫ (         )
 

 

   

This uncertain system and cost function are transformed into the uncertainty 

pulled out form in Eq. (14) and (15) where 
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and the | ̲ |   . 

In order to construct the required optimal quadratic guaranteed cost control, we 

must find the value of the parameter     which minimizes the trace of the stabi-

lizing solution to Riccati equation (23) while satisfying inequality (28). This Ric-

cati equation has been found to have a positive-definite solution for       . 

Figure 1-(a) shows cost derivative versus   and (b) shows    norm from   to  . 

In order to facilitate computation, we have used the cost derivative of Eq. (28) in-

stead of    norm. From the Fig. 1, we can find out that the optimal value is well 

approximated. we determine        . Corresponding to this value of  , we ob-

tain the following stabilizing solution to Riccati equation (23): 
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  [
                  
                  
                  

]        

The corresponding optimal value of the cost bound is      ( ) =           . 

Also, equation of (24) gives the corresponding optimal quadratic guaranteed cost 

control matrix 

  [                     ]                              (  ) 

 
Fig. 1. Cost derivative &    versus   

 

Figure 2 and 3 show the response generated by the proposed guaranteed cost 

sliding mode controller. The switching surface used is  

  [  ] [
 
    

]            

where the sliding surface gain   has been obtained in Eq. (42). The estimate of   

is 0.87, and a value of 1.731 has been used for the upper limit of  . Figure 2 

shows the corresponding step response, control rate commands  ̇ , smooth control 

command   , and sliding surface variable for a command        . Although 
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the  ̇  shows chattering phenomenon because of a switching function, the    being 

applied to the real plant does not show the chattering phenomenon. 

 

 
Fig. 2. Responses of the proposed controller 

 

Figure 3 compares the robustness of the proposed and the conventional three-

loop design [1] with respect to parameter uncertainties and four different unknown 

delays   10ms, 50ms, 100ms and 200ms. The conventional controller starts to 

suffer badly as the unknown delay approaches the bandwidth of the system. How-

ever, the responses of the proposed controller keep insensitive to the uncertainty 

once sliding mode is established, and ensures the guaranteed cost of            

for all the admissible uncertainties. 
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Fig. 3. Comparison of the proposed and conventional designs 

 

5. Conclusion 

If matching condition of uncertainty is not satisfied, robustness of sliding mode 

control becomes limited. In order to solve the unmatched problem, a sliding mode 

algorithm with a combination of an optimal guaranteed control method is present-

ed. The proposed controller keeps the main advantages of standard sliding modes 

and an additional advantage that it can be used to provide an upper bound on a 

performance cost. Thus, system performance degradation incurred by unmatched 

uncertainties is guaranteed to be less than the given bound otherwise the siding 

motion may become unstable or performance may degrade. The simulation results 

show acceptable performance regardless of unmatched uncertainties. Based on its 

robust performance, the proposed controller can be considered as an efficient solu-

tion for controlling missile acceleration subject to unmatched uncertainty. 
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