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Abstract This paper introduces a new way to enforce aircraft flight envelope protec-
tions based on specifications in the phase plane of a protected variable. The protec-
tion is based on applying backstepping on a set of transformed coordinates, such that
accurate phase plane tracking can be achieved. Piecewise polynomials are proposed
for the limit in the phase plane, to obtain less conservative protections that enhance
the aircraft performance around the protected variables. The approach has a well de-
fined and intuitive response behaviour close to the limit in which the distance from
the limit is defined with a constant time to violation. Above the limit, aggressive dis-
turbance rejection can be achieved. The results are shown in simulation of a multi
engine general aviation aircraft.

1 Introduction

Aircraft loss of control in flight, LOC-I, is one of the largest contributors to aviation
accidents today. In the period 2006-2015, there have been 15 fatal accidents in com-
mercial jet aviation directly related to LOC-I with fatalities exceeding 1300 persons
[2]. In general aviation, there were almost 200 fatal accidents related to loss of con-
trol during the period 2011-2015 according to [3]. Developing techniques to prevent
these types of accidents is an important task within the domain of flight safety of
both modern airliners, but also general aviation aircraft and remotely piloted ve-
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hicles. One method to prevent these accidents is the incorporation of reliable and
non-conservative flight envelope protection systems.

The purpose of a flight envelope protection is to prevent an aircraft to escape the
safe envelope, i.e. from exceeding the boundary of some protected parameter. In
modern aviation, the most typical protections include angle of attack, load factor,
pitch angle, bank angle and airspeed. Protections are often incorporated by a com-
bination of visual means, haptic feedback in the control inceptor and/or by soft or
hard limitations invoked in the flight control system. One important aspect of en-
velope protections deals with the task of shaping the response of the aircraft close
to the limit of a protected variable such as the angle of attack or load factor. The
incorporation of this response into the flight control system is non-trivial, and many
possibilities exist to apply the protection control law within the flight control sys-
tem. Some of the methods include limiting of commands to a nominal controller,
limiting or adding corrections to the control signal from the nominal controller, em-
ploying an integrated constrained control law, using pseudo control limitations and
limiting directly in the reference model for a nominal controller.

Limiting the control variable after the nominal controller, control limiting, can be
achieved with different kind of control techniques. In [4], control limiting is per-
formed with PID controllers to track the different envelope limits. When the control
signal from the nominal controller exceeds the output from the limiting controller,
a switching logic engages the respective protection PID controller to track the pro-
tected variable. In [8], a correction to the control signal from the nominal controller
is calculated based on a safe response profile for the limited parameter. The response
profile is inspired by obstacle avoidance techniques from robotics, considering the
limit as an obstacle to be avoided. Another strategy is limiting commands to the
nominal controller, command limitation, which prevents commands that would re-
sult in exceedance of the protected variable to be send to the nominal controller.
In [4], this is performed using parameter projections, to limit the attitude rate com-
manded to a RCAH, Rate Command Attitude Hold control system. Another method
within the domain of envelope protections are integrated constrained control laws
which employ the envelope protection directly in the control law by imposing con-
straints on the allowed output variable. In [4] Model Predictive Control which has
the possibility to include both input and output constraints in the control signal
calculation, is combined with an INDI, Incremental Nonlinear Dynamic Inversion
controller, to satisfy the envelope limits. The linearised system, coming from the
feedback linearisation is controlled using the MPC scheme, and incorporates the
constraints on the linearised coordinates of the INDI. In [7], a backstepping control
law is constructed for the longitudinal dynamics of an aircraft, and by using a bar-
rier control Lyapunov function, this enforces the limits on the output, by preventing
the output state to enter the protected region. Pseudo/virtual control limits can in the
case of a nominal controller of the NDI type, be employed to limit the output vari-
ables. Different techniques to compute the pseudo control limits can be used, in [4],
parameter projection is used to impose the limits. In [10] a Dynamic Trim concept
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is considered as pilot cueing for manual envelope protection. It separates slow and
fast dynamics, and thereby can be used to associate control limits to the expected
steady state response. This technique does not consider the transient response, and
is hence only suitable for steady state critical variables. In [1],[11], [12], a protec-
tion is employed in the reference model of different control strategies, and is based
on considerations in the phase plane of the protected variable.

In this paper, an envelope protection system with a protection domain in the phase
plane of the protected variable is considered. Backstepping control, see [6], is used
as guidance for the construction of the protection control law with appropriate as-
sumptions and approximations. An advantage of this approach is well defined re-
sponse dynamics close to the boundary, but still having the possibility to be non-
conservative further away from the protection boundary. The approach considers
also the transient behaviour of the system, and can be used also to take into ac-
count actuator dynamics in the protection. Another advantage is accurate tracking
of the phase plane envelope, including portions for aggressive disturbance rejection.
The technique is suitable for both control and command limiting, but is especially
suitable for reference model controllers such as INDI or IBKS, Incremental Back-
stepping Controllers.

2 Envelope protections using phase plane

The following section explains the shaping of the response close to the boundary of
the protected variable. As suggested by [11], [12], the method in this paper relies on
shaping the response based on the phase plane of the protected variable. By phase
plane is meant the relation between the protected variable and the derivative of the
protected variable, i.e. specifying the limit of the derivative based on the current
value of the variable, see Figure 1. By restricting the derivative of the protected
variable it is possible to limit the speed at which the protected variable approaches
the boundary based on the distance to it.

The concept is based on the calculation of the required state changes to achieve
tracking of this phase plane limit, when the states approach the phase plane limit
curve. With our proposal, this tracking is obtained by enforcing a limit on either
the control/command signal, or the most upstream integrator in a reference model.
In the case of angle of attack protection, this would employ a limit on the elevator
deflection, or the pitch acceleration q̇ integrator in a longitudinal reference model. In
Figure 2 left is shown the concept of control limiting. P is the plant, i.e. the aircraft,
C is the nominal controller and FEP is the envelope protection system. The reference
r is from the pilot or the autopilot panel, u is the control signal, y is the output and
x is the state feedback. The dotted line represents a logic switch, which changes the
control signal to u f ep, when the control signal u exceeds the limit u f ep. In Figure
2 to the right, the limit is imposed on the command signal to the controller, all its
features including disturbance rejection is maintained while in the control limiting
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Fig. 1 Phase plane envelope of protected variable α

case, problems with integrator windup in the nominal controller has to be dealt with.
In Figure 3 to the left, the protection is included in the reference model R, as a limit

Fig. 2 Left: Control limiting flight envelope protection. Right: Command limiting flight envelope
protection.

on the most upstream integrator. The FEP uses the states from the reference model
xre f , and the whole system runs in open loop. This can be beneficial for more high
level protections such as energy or flight path angle, as the states of the reference
model are noise free. In Figure 3 to the right, the FEP is used with the reference
model in closed loop, i.e. real state measurements are fed back into the FEP. This
has the advantage of including disturbance rejection. A combination of open and
closed loop is also possible, to only feedback some measurements to the FEP.

Fig. 3 Left: Open loop FEP in reference model Right: Closed loop FEP in reference model.
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3 Output limiting with backstepping in the phase plane

This section introduces the developed concept for envelope protections. The ap-
proach is based on the idea of limiting and tracking within the phase plane. The
derivation of the protection laws follows the back stepping procedure which is well
known from e.g. [6] on a set of transformed coordinates. The reason for the in-
troduction of the tilde and non-tilde notation in (1) and (4), is to better highlight
the analogy with backstepping control, and for convenience in the derivations. The
system considered is given in (1) in state space form. x̃ = [x̃1, ...x̃nx ] are the states
that will be affected by the protection control and s̃ = [s̃1, ...s̃ns ] are slow dynamic
states which are not controlled but influence the dynamics of the controlled states.
The original states and functions of the system are denoted with a tilde. The trans-
formed states and functions are without tilde. f̃n, g̃n and d̃n, n = 1..nx are possibly
non-linear functions of both the controlled states and slow dynamic states, but are in
this publication restricted to functions of the variables as shown in (1). This means
that g̃n for the current scope are constants. d̃ and h̃ are the functions that describe
the dynamics of the slow states as shown in (1). The formulation can be extended
to the full unrestricted case, but requires several assumptions for the stability to be
proven, which will be the subject of a later publication.

˙̃x1
˙̃x2
...
˙̃xnx
˙̃s

=


f̃1(x̃1)+ g̃1x̃2 + d̃1(s̃)

f̃2(x̃1, x̃2)+ g̃2x̃3 + d̃2(s̃)
...

f̃nx(x̃1, ..., x̃nx)+ g̃nx ũ+ d̃nx(s̃)
d̃(x̃, s̃)+ h̃ũ

 (1)

In case of a linear state space model, the structure can be written as:[
˙̃x
˙̃s

]
=

[
A P
Q R

][
x̃
s̃

]
+

[ [
01,nx−1 br

]T
Bs

]
ũ (2)

Where A∈Rnx×nx ,P∈Rnx×ns ,Q∈Rns×nx ,R∈Rns×ns are matrices that describe the
system dynamics, with nx beeing the number of controlled states and ns the number
of slow dynamic states. br is a scalar that describes how the input affects the directly
controlled state xnx and Bs is a vector that describes how the input affects the slow
states s̃. In contrast to conventional backstepping as used for control design where
the state x̃1 is required to track a given trajectory yr, in the context of envelope
protections the state derivative ˙̃x1 is required to track the given limiting trajectory
˙̃x1

!
=yr = f

(
x̃1, x̃1,lim

)
in the phase plane. The system is transformed into a new set

of states, x = ˙̃x,s = ˙̃s and u = ˙̃u.[
¨̃x
¨̃s

]
=

[
A P
Q R

][
˙̃x
˙̃s

]
+

[ [
01,nx−1 br

]T
Bs

]
˙̃u⇒[

ẋ
ṡ

]
=

[
A P
Q R

][
x
s

]
+

[ [
01,nx−1 br

]T
Bs

]
u

(3)
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Or if kept in the original notation, the similarities for use in the non-linear case can
more readily be seen:

ẋ1
...

ẋnx−1
xnx

ṡ

=


f1(x1)+g1x2 +d1(s)

...
fnx−1(x1, ...,xnx−1)+gnx−1xnx +dnx−1(s)

f̃nx(x̃1, ..., x̃nx)+ g̃nx ũ+ d̃nx(s̃)
d(x,s)+hu

 (4)

With fn(x1,x2, ...xn) = an1x1 + ...+ annxn, gn = an(n+1) and dn(s) = pn1s1 + ...+
pnnssns in case the system is linear on the form in (2). Now the problem has been
transformed into the usual tracking problem, i.e. to make x1 track yr. The control
law is synthesized using the concept of back stepping on the transformed system in
(4). The error from the reference yr and the state x1 is formed in e1.

e1 = yr− x1 (5)

The derivative of the error can be formulated as in (6), by substituting the dynamics
for ẋ1 as described by the system equations in (4).

ė1 = ẏr− ẋ1 = ẏr− f1(x1)−g1x2−d1(s) (6)

There exist several choices of Lyapunov functions, for example a Barrier one could
be useful for this context, however, for the sake of simplicity, a quadratic Lyapunov
function V1 = 1/2e1

2 is used in the further derivation. The derivative of V1 with
respect to time is given by (7).:

V̇1 = e1ė1 = e1 · [ẏr− f1(x1)−g1x2−d1(s)]
!
≤−c1e2

1 < 0 (7)

The state x2 is used as a virtual control input, to make the derivative of V1 negative
definite as required for Lyapunov stability. The desired x2,d which fulfils (7) is given
in (8):

x2,d = ˙̃x2,d =
1
g1

(ẏr− f1(x1)−d1(s)+ c1 (yr− x1)) (8)

As x2,d cannot be directly controlled, it will differ from the actual x2 by the error
e2. In the next design step, x3 is used as a virtual input to achieve tracking x2 = x2,d
and the desired x3,d is calculated in (9) such that the extended Lyapunov function
V2 =V1 +

1
2 · e

2
2 has the negative definite time derivative V̇2 =−c1e2

1− c2e2
2.

x3,d =
(
ẋ2,d− f2(x1,x2)−d2(s)+g1 · e1 + c2e2

) 1
g2

(9)

The relation in (9) depends on the time derivative of x2,d which is
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ẋ2,d =

ÿr−
∂ f1

∂x1
ẋ1−

∂d1

∂ s
ṡ+ c1

ė1︷ ︸︸ ︷
(ẏr− ẋ1)

 1
g1

(10)

Regarding the derivatives involved in (10) for calculation of ẋ2,d , the following as-
sumptions and approximations can be made in the context of envelope protections
for an aircraft. If the protection is included as open loop in the reference model,
i.e. using the states of the reference model, all derivatives can be included without
further considerations. If it is included with feedback from actual measurements,
different possibilities exist for the calculation and inclusion of the time derivatives
in (10). The derivative ÿr can be aproximated to only depend on x̃1 as shown in (11)
hence not on any derivatives of the states.

˙̃x1,d = yr = yr(x̃1)

¨̃x1,d = ẏr =
∂yr

∂ x̃1
˙̃x1,d

...
x̃ 1,d = ÿr =

∂yr

∂ x̃1∂ x̃1
˙̃x1,d

2
+

∂yr

∂ x̃1
¨̃x1,d

(11)

The second term in (10), ∂ f1
∂x1

ẋ1 is for flight envelope protections usually small and
can be neglected, or included based on the model, and is kept here due to the stabil-
ity consideration. The term ∂d1

∂ s ṡ can either be assumed small due to the time scale
separation, i.e. ṡ = 0, or can be included only neglecting the influence of the deriva-
tive of the control inputs ( ˙̃u = u) on the slow states, i.e. that ∂d1

∂ s hu ≈ 0. Hence, the
influence of the fast states, x, and of s, on the slow states is kept. Only the effect of
the control input rate ˙̃u through the slow states is neglected, which in case of flight
envelope protection is a reasonably assumption. For the last error term derivative,
the largest contribution is the reference ẏr, and the time derivative ẋ1 = ¨̃x1 needs to
be estimated or filtered. If many back steps are involved, for example to include ac-
tuator dynamics, these desired virtual control input derivatives, dk/dtk(xn,d) should
be considered filtered using a command filtered back stepping method, see [5]. The
presented procedure is continued for n = 3, ...,nx using (12).

xn,d =
(
ẋn−1,d− f(n−1)(x1, ...,xn)−dn−1(s)+gn−2en−2 + cn−1en−1

) 1
gn−1

(12)

At this point, this value can be used to limit the most upstream integrator in a ref-
erence model. In many control applications with reference models as [1],[12] for
example, in the case of angle of attack protection, this could be the q̇ integration.
In the case of limiting directly the control signal, the control signal to satisfy this
virtual control can be immediately calculated from the original system (2):

ũ = (xnx,d− f̃nx(x̃1, ..., x̃nx)− d̃nx(s̃))
1

g̃nx
(13)
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This last design step constitutes a slight difference to conventional backstepping
where ũ cannot be calculated directly and involves an additional back step.

This section showed that the back stepping approach can be used as a guidance
for the construction of the protection control law with appropriate approximations
and assumptions. In the following sections, this procedure denoted as OLB (Output
Limiting with Backstepping) is used to synthesize protections for both angle of
attack and flight path angle.

4 Angle of attack protection considering short period dynamics

This section demonstrates the just presented output limiting with backstepping
(OLB) protection approach based on an simple example. The considered system is
the linearised short-period dynamics of an aircraft. Based on this simple system an
OLB alpha protection is derived and compared to an PPB (Phase Plane Based) alpha
protection [11]. Simulation results reveal the benefits of OLB protections compared
to PPB protections, which is first of all tracking in the phase plane. Another advan-
tage of OLB is the possibility to apply piecewise polynomial phase plane limitations.
A physically feasible exemplary piecewise polynomial is presented and applied to
the OLB protection. The related simulations highlight the arising benefits. The most
important ones are an increased disturbance rejection capability, improved perfor-
mance (decreased conservatism) and stability as well as tracking in the phase plane.

4.1 System representation and derivation of OLB protection
control law

The linearised short period dynamics of an aircraft are given as

˙̃x1 = a11x̃1 +a12x̃2
˙̃x2 = a21x̃1 +a22x̃2 +bũ (14)

with the angle of attack x̃1 = α , the pitch rate x̃2 = q and the elevator deflection
ũ = η . Transformation of the given system representation to the notation introduced
in Section 3 results with s̃ = 0 in

¨̃x1 = ẋ1 = f1(x1)+g1x2
˙̃x2 = f̃2(x̃1, x̃2)+ g̃2ũ (15)

with
f1(x1) = a11x1
g1 = a12
f̃2(x̃1, x̃2) = a21x̃1 +a22x̃2
g̃2 = b

(16)
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In case the protection is active, the time derivative of the angle of attack x1 = ˙̃x1,
shall track the desired phase plane given as

yr = f (x̃1, x̃1,lim) (17)

Where x̃1,lim is the maximum allowable angle of attack αmax. The time derivative of
the tracking error

e1 = yr− x1 (18)

is obtained as the following relation by inserting ẋ1 from (15)

ė1 = ẏr− ẋ1 = ẏr− f1(x1)−g1x2 (19)

The time derivative of the Lyapunov control function candidate V1 =
1
2 e1

2 results in
(20) by replacing ė1 with the relation from (19).

V̇1 = e1ė1 = e1 [ẏr− f1(x1)−g1x2]
!
=−c1e1

2 (20)

For c1 > 0 it holds that V̇1 < 0. Solving

ẏr− f1(x1)−g1x2
!
=−c1e1 (21)

which is obtained from (20), for x2 leads to the virtual control law

x2,d = ˙̃x2,d =
1
g1

(ẏr− f1(x1)+ c1e1) (22)

Thus, the system is globally asymptotically stable in the sense of Lyapunov if x2 =
x2,d . From the x̃2 subsystem in (15) we can directly calculate the control law ũ
accordiung to (23) such that x2 tracks x2,d .

ũ =
1
g̃2

(x2,d− f̃2(x̃1, x̃2)) (23)

4.2 Linear phase plane

First of all the OLB protection derived in Section 4.1 is compared to the PPB pro-
tection scheme in [11]. Since the PPB scheme only incorporates linear phase planes
of the form

yr = KP(x̃1,lim− x̃1) (24)

the same phase plane is applied to the OLB protection law. At this point it shall be
noted that for a linear phase plane according to (24) and a linear system according
to (15), the control law ũ in (23) constitutes a linear state feedback law: Insertion of
(22) into (23) and substitution of the relation (18) for e1 yields
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ũ =
1
g̃2

(
1
g1

(ẏr− f1(x1)+ c1(yr− x1))− f̃2(x̃1, x̃2)) (25)

Replacing x1 = ˙̃x1 by the relation given in (14) as well as f1 and f̃2 given in (16)
results in

ũ = 1
g̃2
( 1

g1
(ẏr−a11x1 + c1(yr− x1))−a21x̃1−a22x̃2) =

1
g̃2
( 1

g1
(ẏr−a11(a11x̃1 +a12x̃2)+ c1(yr− (a11x̃1 +a12x̃2)))−a21x̃1−a22x̃2)

(26)

Finally the state feedback structure is obtained by inserting yr and its derivative
which is (incorporating that ˙̃x1 shall track the desired reference trajectory yr)

ẏr =−KP ˙̃x1 =−KPyr =−K2
P(x̃1,lim− x̃1). (27)

into (26) as

ũ =−L
[

x̃1
x̃2

]
+hx̃1,lim (28)

In (28) L and h constitute the constant feedback gain matrix and feedforward gain,
respectively. These are

L =
[

l1 l2
]

l1 = 1
g̃2
( 1

g1
(a11

2 + c1a11−K2
P + c1KP)+a21)

l2 = 1
g̃2
( 1

g1
(a11a12 + c1a12)+a22)

h = 1
g̃2

1
g1
(c1KP−K2

P)

(29)

Application of this feedback law to (14) which can be formulated as the statespace
representation ˙̃x = Ax̃+Bũ, yields the closed- loop dynamics

˙̃x = (A−BL)x̃+Bhx̃1,lim. (30)

The eigenvalues of the closed-loop dynamics (A−BL) can be easily computed to
proof stability of the closed-loop.

If x2 = x2,d holds then x̃2 = 1
a12

(yr− a11x̃1 +
∫
(c1e1)dt). Inserting this relation

into x1 = a11x̃1 +a12x̃2 yields

x1 = ˙̃x1 = yr +
∫
(c1(yr− ˙̃x1))dt

= yr +
∫
(c1yr)dt− c1x̃1

(31)

Substitution of yr from (24) finally results in

˙̃x1 =−(KP + c1)x̃1−
∫
(c1KPx̃1)dt +KPx̃1,lim +

∫
(c1KPx̃1,lim)dt (32)

The corresponding Laplace transform is

sX̃1(s) =−(KP + c1)X̃1(s)−
1
s

c1KPX̃1(s)+KPX̃1,lim(s)+
1
s

c1KPX̃1,lim(s) (33)
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Solving for X̃1(s) leads to the transfer behaviour

X̃1(s) =
KPs+ c1KP

s2 +(KP + c1)s+ c1KP
X̃1,lim(s) (34)

This is the resulting closed loop behaviour of the protection dynamics. If we let
c1 go to infinity, we see that the corresponding dynamics is the expected 1st order
behavior of x̃1.

X̃1(s) =
KP
c1

s+KP

s2

c1
+ KP

c1
s+ s+KP

X1,lim(s)→
KP

s+KP
X̃1,lim(s),c1→ ∞ (35)

This shows that the protected dynamics follow the desired dynamics defined by the
protection function yr in the limit, hence the c1 gain defines the aggressiveness with
which the protected dynamics follow the desired response dynamics. This dedicated
behaviour is incorporated into the the polynomial shaping introduced in Section
4.3. As will be revealed later the polynomial is shaped in such a way that close
to the limit the response corresponds to the linear one above. A linear behaviour
close to the limit as described above is advantegous as the timeconstant τp = 1/KP
defines the predicted time to limit violation. This predicted time to limit violation
describes the time from the current state x̃1 until its limit x̃1,lim is reached, given
that the derivative ˙̃x1 is maintained, as depicted in Figure 4. The comparison of PPB
protection and the proposed OLB protection in the phase plane shown in Figure
4, reveals that OLB is capabable of tracking the limiting function while PPB is
not. This is important in terms of showing compliance with the required behaviour
defined by the phase plane envelope.

Fig. 4 Left: Visualization of predicted time to limit Right: Comparison of phase plane tracking of
OLB and PPB angle of attack protection
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4.3 Piecewise polynomial phase plane

This section introduces the physically feasible polynomial phase plane used in the
angle of attack protection derived in Section 4.1 and highlights the arising advan-
tages which are increased performance and improved disturbance rejection. The
piecewise polynomial consists of three polynomials. At the transition point the first
and second polynomial are equal up to the derivatives required for the control law
developed in Section 4.1. The desired phase plane is shaped as

yr =

a0 +a1x̃1 +a2x̃2
1 +a3x̃3

1 +a4x̃4
1 +a5x̃5

1 +a6x̃6
1 for0 < x̃1 < x̃1,activate

b0 +b1x̃1 +b2x̃2
1 +b3x̃3

1 +b4x̃4
1 +b5x̃5

1 +b6x̃6
1 for x̃1,activate < x̃1 < x̃1,lim

Kr(x̃1,lim− x̃1) for x̃1,lim < x̃1
(36)

Figure 5 depicts the resulting phase plane as well as the linear phase plane used in
Section 4.2.

Fig. 5 Piecewise polynomial phase plane and linear phase plane

Figure 6 compares the phase plane response and time domain response of the
OLB protection with the linear phase plane (24) and the OLB protection with the
polynomial phase plane (36). Application of the polynomial phase plane limit leads
to an improved performance as can be seen in both the time domain and phase plane.
The nominal, unprotected response is tracked far longer. Hence the protection with
the linear phase plane limit is more conservative. Close to the limit the polynomial
phase plane corresponds to the linear phase plane in order to approach the limit with
a linear behaviour specified by the time to exceedance τp.

Due to the increased slope of the polynomial phase plane compared to the linear
phase plane above the limit x̃1,lim, the disturbance rejection is increased. The reason
is that the slope defines the degree of aggressiveness in pushing back the state x̃1
to its limit once it is violated due to a gust for example. Figure 7 compares the
disturbance rejection characteristics of the OLB protection with linear phase plane
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Fig. 6 Left: Comparison of time domain response of unprotected Angle of attack and protected
with linear and polynomial phase plane Right: Comparison of phase plane of unprotected and
OLB with linear and polynomial phase plane limit

and of the OLB protection with the introduced piecewise polynomial phase plane.
The applied disturbance is a 1− cosine gust with maximum certification amplitude
according to [9]. The applied disturbance is depicted in Figure 7. As expected, the
increased slope above x̃1,lim of the polynomial phase plane leads to an considerably
improved disturbance rejection.

Fig. 7 Left: Applied 1− cosine gust Right: Comparison of unprotected response and of OLB re-
sponse with linear and polynomial phase plane limit subjected to disturbance
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5 Flight path angle protection considering coupled linearised
longitudinal dynamics

In order to introduce the concept and to highlight its most important characteris-
tics it was demonstrated in the previous section for an alpha protection based on
the linearised short period dynamics of an aircraft considering only pitch rate and
angle of attack as states of the system. States as velocity V and flight path angle γ

could have been included as well, but were neglected for simplicity in the explana-
tion. In the following example two additional states of the longitudinal motion are
taken into account, velocity and flight path angle. To demonstrate the full concept,
flight path angle is now to be limited, which in contrast to the angle of attack pro-
tection, requires an additional backstepping loop. The velocity V is considered as a
slow state according to Section 3. Simulation results reveal that the developed con-
cept successfully protects the desired variable, also in the case where multiple back
steps are required as well as its capability to handle the additional influences on the
protected dynamics arising from the slow state dynamics.

5.1 System representation and protection control law

The considered system are the linearised dynamics of the longitudinal motion of an
aircraft, given as the state space representation in (37).

˙̃x1
˙̃x2
˙̃x3
˙̃s1

=


γ̇

α̇

q̇
V̇

=

[
A P
Q R

]
γ

α

q
V

+


0
0
br
bs

 ũ (37)

with A ∈R3×3,P ∈R3×1,Q ∈R1×3,R ∈R1×1, the flight path angle γ = x̃1, angle of
attack α = x̃2 and pitch rate q = x̃3 and the slow dynamic state, velocity V = s̃1. The
input ũ = η is the elevator deflection. This system can be represented in the notation
introduced in Section 3 as (38).

˙̃x1
˙̃x2
˙̃x3
˙̃s1

=


f̃1(x̃1)+ g̃1x̃2 + d̃1(s̃1)

f̃2(x̃1, x̃2)+ g̃2x̃3 + d̃2(s̃1)
f̃3(x̃1, x̃2, x̃3)+ g̃3ũ+ d̃3(s̃1)

d̃(x̃, s̃1)+ h̃ũ

 (38)

As described in Section 3 the system is further transformed into (39) by differentia-
tion and the change of coordinates ˙̃xi = xi, ˙̃si = si.
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¨̃x1
¨̃x2
¨̃x3
¨̃s1

=


ẋ1
ẋ2
ẋ3
ṡ1

=


f1(x1)+g1x2 +d1(s1)

f2(x1,x2)+g2x3 +d2(s1)
f3(x1,x2,x3)+g3u+d3(s1)

d(x,s1)+hu

=

[
A P
Q R

]
γ̇

α̇

q̇
V̇

+


0
0
br
bs

 ˙̃u (39)

First of all x2,d = α̇d is calculated according to (8). Therefore, x1 = γ̇ is estimated
using the relation γ̇ = f̃1(x̃1)+ g̃1x̃2 + d̃1(s̃1) given by (38) with the measured flight
path angle x̃1, angle of attack x̃2 and velocity s̃1. Furthermore d1(s1) is calculated
(with the estimate s1 = V̇ using (37)) as

d1(s1) = p11V̇ = p11(q11γ +q12α +q13q+ r11V +bsũ) (40)

with p11bs ≈ 0, i.e. the elevators direct influence on the flight path angle dynamics
through the velocity dynamics is neglected. Here pi j, qi j and ri j refers to the entries
of matrices P, Q and R respectively. In the next step x3,d = q̇d according to (9) is
calculated. Therefore, the time derivatives ẋ1 = γ̈ and ṡ1 = V̈ are required to obtain
ẋ2,d , calculated as in equation (10). ẋ1 is estimated as ẋ1 = f1(x1)+g1x2 +d1(s1)
according to (39). Thereby x1 = γ̇ and d1(s1) from the previous step can be used.
The estimate x2 = α̇ is obtained over α̇ = f̃2(x̃1, x̃2) + g̃2x̃3 + d̃2(s̃1) (38), where
additionally the measured pitch rate x̃3 is used. The time derivative ṡ follows
ṡ = q11γ̇ + q12α̇ + q13q̇+ bs ˙̃u. In (10) we insert the relation ∂d1

∂ s1
ṡ1 = p11ṡ1, incor-

porating p11bs ≈ 0 and p11q13br ≈ 0 as q13 ≈ 0, what is reasonable as the phugoid
dynamics are not influenced by the pitch rate dynamics. The procedure to verify
stability reveals the required assumptions that need to be satisfied for the system.
These assumptions vary between different protections, e.g. in the γ protection, bs
and q13 needed to be zero, which is not necessarily the case for other protections.
Finally ũ is calculated as presented in (13).

ũ = (x3,d− f̃3(x̃1, x̃2, x̃3)− d̃3(s̃1))
1
g̃3
. (41)

The control signal ũ can either be used as control limiting for the elevator η , or
the variable x3,d = q̇d can be used as a limiter in the reference model such that the
maximum pitch acceleration is limited by the desired q̇d wrt. tracking the phase
plane limit.

5.2 Phase plane tracking, uncertainties and noise

The phase plane envelope is again constructed as a piecewise polynomial function
according to (36). The nominal phase plane tracking is shown in Figure 8 to the
right, and the corresponding time domain response is shown to the left. If imple-
mented as open loop in a reference model, the tuning allows a more free choice of
tuning parameters c1 and c2 as the effect of noise does not propagate in the back
stepping. If on the other hand, the loop is closed with noisy measurements, the gain
tuning has to be somewhat relaxed, and the control signal has to be smoothed. In
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Fig. 8 Left: Time domain response of gamma protection with linear and polynomial phase plane.
Right: Phase plane response of gamma protection with linear and polynomial phase plane.

Figure 9 the response is shown with discrete white noise added on the γ measure-
ment with σ = 0.2deg, on α measurement with σ = 0.5deg and on the pitch rate
measurement, q, with σ = 0.1deg/s at a 100Hz sampling rate. The control signal ũ
has been smoothed using a first order filter. Figure 9 also illustrates the response in
case of uncertainties, where 10% is added to all coefficients in the model. Both cases
demonstrate that the proposed protection concept is capabable to achieve tracking of
the phase plane limitations even in case of realistic levels of uncertainties and noise.
The gains have been chosen to c1 = 10 and c2 = 9, such that from steady state flight
with maximum command towards the limit, the envelope protection command does
not saturate in the control signal. The tuning of the phase plane limits and the gains
are subject for another publication, but should be chosen incorporating aircraft per-
formance, actuator constraints/rate constraints, disturbance analysis, uncertainties
and measurement noise and should be scheduled over the entire flight envelope.

Fig. 9 Left: Time domain response of gamma protection with uncertainties and noise. Right: Phase
plane response of gamma protection with uncertainties and noise.
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6 Conclusion

In this paper, a strategy for phase plane based flight envelope protection using a
back stepping type approach was evaluated with proven stability in the protection
domain and verified through simulation analysis. The method is able to successfully
track sufficiently smooth phase plane limitations, also in case of realistic levels of
uncertainty and noise. The approach is capable of taking into account the transient
response behaviour, and can incorporate aggressive disturbance rejection above the
limit of a protected variable. By utilizing piecewise polynomial limits in the phase
plane, a less conservative protection is established, enhancing aircraft performance
around the limit of protected variables. The approach has a well defined and intuitive
response behaviour close to the limit, in which the distance from from the limit is
defined with a constant time to violation. Further research will go in the direction of
non-linear models for angle of attack protection, together with phase plane envelope
adaptation based on flight conditions and actuator failures.
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