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Abstract The Solar System features thousands of Near-Earth Asteroids that could
be at collision risk with our planet in the future. Scientists are investigating the
possibility of deflecting asteroids from their trajectory by means of a hyper-velocity
impactor spacecraft. The aim of this research is to develop and simulate a GNC
strategy to control the spacecraft towards the asteroid. The navigation is based on the
use of a camera to estimate the relative position through image analysis and a filtering
process. A zero-effort error strategy is adopted for the control. A simulator has been
developed to render the simulated images online and test the GNC algorithms. The
simulator is used to assess the performance of the strategy on different scenarios and
perform a sensitivity analysis.

1 Introduction

The Solar System features thousands of Near-Earth Asteroids (NEA). Some of
them could potentially have a collision with our planet in the future. The scientific
community is currently investigating the possible actions to avert this event, which
could lead to a catastrophic outcome. A possible strategy that is being considered is
the deflection of the asteroid from its trajectory by impacting it with a spacecraft at
very high velocity.

Several missions to asteroids or comets have already been realized or are under
study by the major space agencies. In the followings, the missions that can be
considered more relevant for this work are reported.
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JAXA Hayabusa [11] was an exploration mission to asteroid 25143 Itokawa. It
had autonomous optical navigation, using a target marker previously released on the
asteroid. The camera image was processed using maximum correlation shifting and
FFT. The control law allowed to approach from a prescribed direction.

NASA Deep Impact [10] was an Hypervelocity Asteroid Impact Vehicle to comet
Tempel 1. For GNC it used AutoNav, a software developed for the previous mission
Deep Space 1, which is able to perform image processing, orbit determination
and maneuver computation. The image was processed by brightness centroiding,
blobbing and scene analysis for site selection. It featured pulsed predictive control.

ESA Don Quijote [2] was a space probe concept to impact a NEA and determine
the resulting momentum transfer. It was composed of an orbiter and an impactor.
The orbiter could also perform surface analysis andmapping. It featured autonomous
optical navigation for the impactor. Thismission had been canceled in favor of AIDA.

ESA/NASA Asteroid Impact and Deflection mission (AIDA) [7] is a proposed
pair of probes that would demonstrate an impact to change the motion of the binary
NEA Didymos. NASA DART would impact the smallest body with the aid of a
camera changing the speed by a fraction of 1 %. ESA Hera would arrive at Didymos
in advance to study the asteroid and measure the effects of the impact.

The Space Mission Planning Advisory Group (SMPAG) [6] is a joint initiative
established in 2013 between space agencies and other institutions, in order to prepare
an international response to an asteroid impact threat. A preliminary work performed
by the Italian Space Agency for SMPAG, which was aimed at defining and analyzing
a test scenario for a deflection mission, was presented by Colombo et al. [3]. The
chosen target for simulations is 2010 RF12, a small NEA with significant probability
of hitting the Earth. The work considered an asteroid in the orbit of 2010 RF12 with
increased mass and diameter. The outcomes of the analysis was an optimal impact
orbit and a preliminary list of components for the spacecraft.

Orbital insertion maneuvers are subjected to errors, therefore the spacecraft has
to be controlled towards the target during the final phase of the mission. Since the
camera can detect the asteroid only few hours before the impact, it is mandatory that
Guidance, Navigation and Control (GNC) is performed autonomously. This paper
aims at introducing a GNC strategy for the already defined scenario to 2010 RF12.

The paper is organized as follows. The dynamics of the asteroid and the spacecraft
are described in Sec. 2. Then, Sec. 3 presents the estimation process for the transla-
tional and rotational states by means of Kalman filters, focusing on the navigation
camera and on the image analysis algorithm. The control strategy that allows the
spacecraft to correct its course in order to impact the asteroid is defined in Sec. 4.
Attitude control to keep the camera pointing towards the asteroid is introduced in
Sec. 5. The defined equations and algorithms are used to develop a software simu-
lator using MATLAB®, Simulink® and Blender®; the results of the simulations are
reported in Sec. 6. In conclusion, the feasibility of the mission is discussed in Sec. 7,
highlighting the reached goals and outlining the necessary future work.
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2 Physical model

The dynamics of the asteroid and the spacecraft are modeled using classical rigid
body dynamic equations, considering gravitational attraction from the Sun. The
reduced timespan of the simulation allows to neglect the perturbation effect due to
the mutual gravitational attraction.

2.1 Reference frames

Three reference frames will be used in order to describe the position and velocity of
the asteroid and the spacecraft: the heliocentric ecliptic coordinate system, the Hill’s
frame and the spacecraft’s body fixed frame.

2.1.1 Heliocentric ecliptic coordinate system

The heliocentric ecliptic coordinate system, denoted as E and with unit vectors
( ı̂, ̂, k̂), has origin at the center of the Sun, its fundamental plane is the ecliptic
plane and the ı̂ axis points towards the vernal point. It is right handed and inertial.

2.1.2 Hill’s rotating frame

Considering the position of the asteroid with respect to the Sun ra, its velocity Ûra
and its specific angular momentum h = ra × Ûra, the axes of the Hill’s frame are:

r̂ = ra/‖ra‖, θ̂ = ĥ × r̂, ĥ = h/‖h‖ (1)

r̂ will always indicate the unit vector of ra, even if the subscript a is omitted. The
Hill’s frame will be centered in the asteroid’s center of mass.

Since the asteroid is orbiting around the Sun with angular velocity ωa = Ûθ ĥ,
where θ is the true anomaly, the unit vectors r̂ and θ̂ are time dependent; their time
derivatives are:{

Û̂r = ω × r̂ = Ûθ θ̂
Û̂θ = ω × θ̂ = − Ûθ r̂

;

{
Ü̂r = Üθ θ̂ + ω × ( Ûθ θ̂) = Üθ θ̂ − Ûθ2 r̂
Ü̂θ = − Üθ r̂ + ω × (− Ûθ r̂) = − Üθ r̂ − Ûθ2 θ̂

(2)

2.1.3 Body fixed frame

This frame is fixed on the spacecraft, and is composed by its principal axes of inertia.
Since the spacecraft attitude is not constant, this frame is non-inertial. This frame
will be denoted using the letter B and the unit vectors (x̂, ŷ, ẑ).
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The attitude of the spacecraft with respect to the ecliptic frame is represented
using quaternions [4], implemented as column matrices:

q = qw + qx i + qy j + qz k, q =
[
qw qx qy qz

]T (3)

For a rotation θ around an unit vector (ux, uy, uz) the quaternion will be:

q = cos (θ/2) + (ux i + uy j + uz k) sin (θ/2) (4)

A vector v can be rotated using the Hamilton product ×:[
0
vB

]
= q∗ ×

[
0
vE

]
× q (5)

The rotation matrix that allows to convert a vector from the ecliptic frame to the
body fixed frame can be obtained from the rotation quaternion as:

AB/E =


q2
w + q2

x − q2
y − q2

z 2(qx qy + qw qz) 2(qx qz − qw qy)

2(qx qy − qw qz) q2
w − q2

x + q2
y − q2

z 2(qy qz + qw qx)

2(qx qz + qw qy) 2(qy qz − qw qx) q2
w − q2

x − q2
y + q2

z


(6)

2.2 Asteroid translational dynamics

The asteroid is assumed to be subjected only to Sun’s gravity: the other perturbing
forces are assumed to have negligible effects in the short timespan of the simulation.
Consequently, the asteroid is on a Keplerian orbit and its motion can be described
using its true anomaly θ. The dynamical equations can be derived from Newton’s
gravitation law:

Üra = −
µ

r3
a

ra = −
µ

r2
a

r̂ (7)

where µ is the standard gravitational parameter of the Sun and r̂ = ra/ra as pre-
viously defined. The acceleration can be obtained by differentiating twice the posi-
tion ra:

Üra =
(
Üra − ra Ûθ2

)
r̂ +

(
ra Üθ + 2 Ûra Ûθ

)
θ̂ (8)

Substituting (8) into (7), and considering that r̂ and θ̂ are orthogonal, the system
of coupled nonlinear ordinary differential equations that describe the orbit of the
asteroid around the Sun is obtained:

Üra = ra Ûθ2 −
µ

r2
a

; Üθ = −2
Ûra
ra
Ûθ (9)
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2.3 Spacecraft dynamics

The motion of the spacecraft is assumed to be governed by the Sun’s gravitational
force and the control force:

Ürs = −
µ

r3
s

rs +
f

ms
(10)

where rs is position vector of the spacecraft with respect to the Sun, f is the control
force and ms is the mass of the spacecraft. The control force will be computed in
the body frame, while the dynamic equations of the spacecraft will be written in
the Hill’s frame. The conversion from one frame to the other is achieved using the
rotation matrix AH/B, that can be obtained from the matrices that relate the Hill’s
and the body frames to the ecliptic frame (AH/E and AB/E respectively):

f H =
[

fx fy fz
]T
H
= AH/B f B, AH/B = AH/E AT

B/E (11)

It is convenient to use the relative position vector between spacecraft and asteroid:

ρ = rs − ra = x r̂ + yθ̂ + zĥ (12)

Considering that the second derivative of rs is Ürs = Üra + Üρ and using equations
Eq. 7 and 10, the relative translational dynamics can be obtained [12, 5]:

Üx − 2 Ûθ Ûy − Üθy − Ûθ2x = −µ (r + x )/r3
s+ fx/ms + µ/r2

a

Üy + 2 Ûθ Ûx + Üθx − Ûθ2y = −µ ( y )/r3
s+ fy/ms

Üz = −µ ( z )/r3
s + fz/ms

(13)

The attitude is governed by Euler’s rotation equation and by quaternion kinemat-
ics ([4]), with ωB angular velocity, IB inertia matrix and mB applied torque:

IB ÛωB + ωB ×

(
IBωB

)
= mB; Ûq = 1

2

[
0
ωB

]
× q (14)

3 Navigation

The relative attitude and position of the spacecraft with respect to the asteroid must
be estimated to control the trajectory until impact. A star tracker, a gyroscope and a
navigation camera allow to reconstruct the state of the system using Kalman filters.
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3.1 Navigation camera

The image acquired by the navigation camera is simulated using the Blender®
software, considering the relative position of the spacecraft with respect to the
asteroid and the camera’s optical properties. The image is then interpreted by a
processing algorithm that returns the angular position of the asteroid in the FOV.
These angles are then used by the Kalman filter to estimate the translational state.

As reported in Fig. 1, the image is read into a matrix of 8-bit values (from 0
for black to 255 for white). A threshold filter is applied and a circle is fitted on
the illuminated border of the asteroid. This gives an estimation of the center of the
asteroid in the FOV. A more detailed description of these operations follows.

Fig. 1 Image analysis algorithm
Init

Read camera image

Threshold filter

Detect bounding box and center of brightness

Is width or height
of the b. box ≥ 5 px?

Generate search lines

Output
center of brightness

Find points of brightness variation along lines

Fit circle

Output circle center and diameter

End

yes

no

Brightness threshold The pixels beyond a given brightness threshold are deter-
mined. This returns a boolean matrix, where the asteroid’s image is formed by ones
and the background is translated into zeros.

Bounding box and brightness centroiding The matrix is scanned to find the
smallest box that contains all the illuminated pixels to locate the asteroid in the
image. A weighted mean of the position of the illuminated pixels gives the center
of brightness (COB), that serves as a preliminary estimation of the asteroid center.
With B as the boolean matrix (true and false are 1 and 0), the COB can be computed:

CoB =

(∑
i, j i B(i, j)∑
i, j B(i, j)

,

∑
i, j j B(i, j)∑
i, j B(i, j)

)
(15)
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Circular fitting A possible way to mitigate the error between the center of bright-
ness and center of mass is to guess the shape of the asteroid. When its image is large
enough, it is possible to fit a circular shape using the illuminated points; then, the
center of the circle is used instead of the COB. The determination of the points on
the border is based on search lines parallel to the direction of the Sun rays, in order
to use only the illuminated edge of the asteroid.

The equation of a circle with radius r centered in (cx, cy) is:

x2 + y2 = 2 cx x + 2 cy y + r2 − (c2
x + c2

y) (16)

This equation, applied to each fitting point (xi, yi), leads to the linear system:
x1 y1 1
...

...
...

xN yN 1

 a =


x2

1 + y2
1

...
x2
N + y2

N

 ; with solution: a =


2 cx
2 cy

r2 − (c2
x + c2

y)

 (17)

With least-squares approximation it is possible to obtain a, i.e. the parameters in
Eq. 16. The resulting center and diameter are used to determine the position and the
size of the asteroid, using optical relations that will be introduced afterwards.

Other shapes could be used, for instance elliptical fitting could be ideally more
suitable for asteroids with elongated shape. In this case, the fitting parameters are the
position of the center, the length of the axes and an orientation angle. However, in the
frame of preliminary tests, elliptical fitting turned out to provide worse performances
due to the concentration of all the fitting points in the illuminated side of the asteroid.
This is evident in Fig. 2 (left), where the obtained circle and ellipse are overlaid.
The circle fits well the shape of the asteroid, while the resulting ellipse is twice the
correct size, with a center almost outside of the asteroid. The adoption of elliptical
shapes in the fitting process will be investigated further in future studies.

The algorithms have also been tested on asteroid Itokawa (Fig. 2, right): both the
circular and the elliptical fits give a smaller estimation of the size of the asteroid,
leading to an estimation of the center that shifts towards the illuminated border.

Fig. 2 Different fitting methods applied to Bennu and Itokawa (straight lines = scan lines, yellow
circles = detected fitting points, green dashed line = reference circle with 550 m diameter, red line
= fitted circle, light blue line = fitted ellipse, black ∗ = center of brightness (COB))
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3.1.1 Optical properties and relations

The mathematical relations that allow to convert the position of the asteroid in the
image to a measurement that can be used by the Kalman filter are reported below.

Focal Length Assuming that the asteroid distance is much longer than the size of
the camera, the Focal Length (FL) is the distance between the sensor and the lens.

Field Of View The Field Of View (FOV) is the solid angle detected by the camera.

Resolution The resolution (Res) is the number of pixels on the sensor of the camera,
that will be supposed square (in size and resolution).

Size of the sensor The length of its sides can be obtained from the relation:

SensorSideLength = 2 × FL × tan (FOV/2) (18)

The meaning of this equation is that to have a longer FL, while keeping the same
FOV, the sensor must be enlarged proportionally; otherwise, the FOV is reduced.

Size of a pixel Since the sensor is a uniform grid composed by Res-by-Res pixels,
each of them is a square with sides of length:

PixelSideLength = SensorSideLength/Res (19)

Angular measurements The image is stored in terms of a square matrix of size
Res-by-Res. The following procedure is adopted to retrieve the physical position of a
pixel, in terms of the azimuth and elevation angles. First, the index range is centered:

[1; Res] → [−(Res − 1)/2;+(Res − 1)/2] (20)

Then, a Cartesian coordinate centered on the sensor can be obtained by multiplying
the range in Eq. 20 by the size of a pixel. The ratio of the position on the sensor with
respect to the focal length represents the tangent of the angle in the camera FOV,
that will be considered equal to the angle itself. The overall formula that allows to
convert the position of a pixel (PixelPos) in the range [1; Res] to a camera angle is:

CameraAngles = (PixelPos − 0.5 px − Res/2) × PixelSideLength/FL (21)

Image size Since the diameter of the asteroid and its projection on the sensor form,
with the lens, two triangles in similarity relationship, it is possible to convert the
physical size (AstDiameter) to the projected size on the sensor (AstImgDiameter):

AstImgDiameter = AstDiameter × FL/Distance (22)

The size in pixels (AstImgDiameterPx) can be computed by dividing the physical
size of the image on the sensor by the size of a pixel:

AstImgDiameterPx =
AstImgDiameter
PixelSideLength

=
AstImgDiameter × Res

SensorSideLength
(23)
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3.2 Filtering

The implemented feedback control depends on the state of the system, yet the
spacecraft does not have direct measurements of it. In order to obtain sufficiently
accurate estimates of the spacecraft state it is necessary to use the measurements
given by the sensors, which are processed by a Kalman filter. Kalman filters need
the state space equations and the measurements of the system:

Ûx(t) = f (x(t)) + u(t); ỹ(t) = h (x(t), t) + v(t) v(t) ∼ N (0,R(t)) (24)

where x is the state vector, u is the input (the control action) and ỹ is themeasurement
from the sensor with additive noise v. The dynamics of the system have been assumed
to be affine in the control action.

Extended Kalman filters need also a linearized version of the equations:

Ûx(t) = F(t)x(t) + u(t); ỹ(t) = H(t)x(t) + v(t) v(t) ∼ N (0,R(t)) (25)

where F and H are the Jacobian matrices of f and h with respect to the state.

3.2.1 Translation state equations

The translational state of the system is the position of the spacecraft with respect to
the asteroid written in the Hill’s reference frame ρ:

x =

[
ρ

Ûρ

]
, Ûx =

[ Ûρ
Üρ

]
; F =

∂ Ûx
∂x
=

[ ∂ Ûρ
∂ρ

∂ Ûρ
∂ Ûρ

∂ Üρ
∂ρ

∂ Üρ
∂ Ûρ

]
(26)

Considering that the state affects also rs since rs = ra + ρ, the Jacobian is:

∂ Ûρ
∂ρ
= 03,

∂ Ûρ
∂ Ûρ = I3,

∂ Üρ
∂ρ
=


Ûθ2 Üθ 0
− Üθ Ûθ2 0
0 0 0

−
µ

r3
s

I3+3
µ

r5
s

[
rs r

T
s

]
,
∂ Üρ
∂ Ûρ =


0 2 Ûθ 0
−2 Ûθ 0 0

0 0 0

 (27)

The measurements for the camera are the azimuth and elevation of the asteroid in
the FOV; using the previously presented optical relations, they can be computed as:

h =
[
γ α

]T
=

[
−a/c +b/c

]T (28)

where (a, b, c) is Line Of Sight (LOS) unit vector in the body frame:

ρ̂B =
[
a b c

]T
B
= ρB/ρ = AB/Hρ

H/ρ = AB/H ρ̂
H (29)

The measurement equation can be now expressed as:

h = h(ρ̂B) = h(AB/H (q)ρ
H/ρ) (30)
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It is now necessary to compute the Jacobian matrix of the measurement function
with respect to the state of the system:

H =
∂h

∂ρH
=

∂h

∂ ρ̂B
∂ ρ̂B

∂ ρ̂H
∂ ρ̂H

∂ρH
(31)

∂h

∂ ρ̂B
=

[
−1/c 0 a/c2

0 1/c −b/c2

]
,

∂ ρ̂B

∂ ρ̂H
= AB/H (32)

∂ ρ̂

∂ρ
=
∂

(
ρ/

√
ρT ρ

)
∂ρ

=
I3

√
ρT ρ − ρρT /

√
ρT ρ

ρT ρ
=
ρ2 I3 − ρρ

T

ρ3 (33)

The derivatives of the measurement with respect to the rotation quaternion are:

∂h

∂q
=

∂h

∂ ρ̂B

[
∂AB/H

∂qw
ρ̂H

∂AB/H

∂qx
ρ̂H

∂AB/H

∂qy
ρ̂H

∂AB/H

∂qz
ρ̂H

]
(34)

The derivatives of AB/H can be derived considering Eq. 6.
Since the estimated state is expressed with respect to the inertial frame by qB/E ,

while the quaternion needed for the previous equation is between body frame and
Hill’s frame (qB/H ), it is necessary to convert the rotation and its covariance Σ:

qB/E = qB/H × qH/E =⇒ qB/E = qB/E × q∗H/E (35)

ΣqB/H
= Jq ΣqB/H

JTq ; Jq =
∂

(
qB/E × q∗

H/E

)
∂qH/E

=


+qw +qx +qy +qz
−qx +qw −qz +qy
−qy +qz +qw −qx
−qz −qy +qx +qw

 (36)

3.2.2 Rotation state equations

The state of the system for the rotational dynamics is composed of its angular velocity
ωB and its attitude quaternion qB/E (with respect to the inertial reference frame):

x =

[
ω
q

]
, Ûx =

[
Ûω
Ûq

]
; F =

∂ Ûx
∂x
=

[ ∂ Ûω
∂ω

∂ Ûω
∂q

∂ Ûq
∂ω

∂ Ûq
∂q

]
(37)

The superscript B and the subscript B/E are omitted to simplify the notation. The
Jacobian can be obtained from the rotational equations (14).

Measurement: star tracker Star trackers acquire images of deep space in order
to reconstruct the attitude of the spacecraft using the position of the stars in their
FOV. Within this work, the star tracker provides directly angular measurements of
the spacecraft attitude. Choosing for example Tait-Bryan angles, that describe the



An autonomous GNC strategy for asteroid impactor missions 11

rotations as Rz(ψ)Ry(θ)Rx(φ) ([1, p. 39]), the measurements are:

h =


φ
θ
ψ

 =

atan2 (a1, a2)

asin (a3)
atan2 (a4, a5)


H =

∂h

∂x
=

[
03

∂h
∂q

] with :



a1 = qw qx + qy qz
a2 = 1/2 − (q2

x + q2
y)

a3 = 2 (qw qy − qz qx)
a4 = qw qz + qx qy
a5 = 1/2 − (q2

y + q2
z)

(38)

Measurement: gyroscope The gyroscope measurement function and Jacobian are:

h = ωB; H =
∂h

∂x
=

[
I3 03,4

]
(39)

3.2.3 Consider Extended Kalman filter equations

The reconstruction of the state is performed using a continuous-discrete Consider
Extended Kalman Filter (CEKF) [13]. The CEKF is an extension of the EKF that
allows to account for the effect of a bias in the estimation directly in the propagated
covariance matrix. In this way, it is possible to take into consideration that the center
of mass of the asteroid may not coincide with the center identified in the image. This
can be modeled as a displacement ρ̄ added to the estimated position ρ̃:

ρ(t) = ρ̃(t) + ρ̄, ρH =
[
x y z

]T
, ρ̃H =

[
x̃ ỹ z̃

]T
, ρ̄H =

[
x̄ ȳ z̄

]T (40)

The term ρ̄ is modeled as a Gaussian zero-mean random error. Considering Eq. 40
the previously derived system Eq. 13 becomes:

Üx − 2 Ûθ Ûy − Üθ(ỹ + ȳ) − Ûθ2(x̃ + x̄) = −µ (r + x̃ + x̄ )/r3
s + fx/mSC+µ/r2

c

Üy + 2 Ûθ Ûx + Üθ(x̃ + x̄) − Ûθ2(ỹ + ȳ) = −µ ( ỹ + ȳ )/r3
s + fy/mSC

Üz = −µ ( z̃ + z̄ )/r3
s + fz/mSC

with: rs = [(ra + x̃ + x̄)2 + (ỹ + ȳ)2 + (z̃ + z̄)2]1/2

(41)

The state that is reconstructed is therefore:

x =
[
ρ̃ Û̃ρ

]T
, Ûx =

[ Û̃ρ Ü̃ρ
]T ; Ûx(t) = f (x(t), ρ̄, t) + u(t) (42)

State propagation is not affected by the introduction of ρ̄, since its estimate is zero.
The Jacobian F remains as previously derived and the Jacobian with respect to the
displacement ρ̄, Bρ̄ , is the left half of F from Eq. 26, thanks to the fact that partial
derivatives of a function of ρ with respect to ρ, ρ̃ or ρ̄, are identical:

∂ f (ρ)
∂ ρ̃

=
∂ f (ρ)
∂ρ

∂ρ

∂ ρ̃
=
∂ f (ρ)
∂ρ

,
∂ f (ρ)
∂ ρ̄

=
∂ f (ρ)
∂ρ

∂ρ

∂ ρ̄
=
∂ f (ρ)
∂ρ

(43)
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Table 1 Consider Extended Kalman Filter equations

Model Ûx(t) = f (x(t), ρ̄, t) + u(t); ỹ(t) = h(x(t), ρ̄, t) + v(t); v(t) ∼ N (0, R(t))

Gain K =
(
P−xxHT

x + P−x ρ̄HT
ρ̄

) (
HxP−xxHT

x +HxP−x ρ̄HT
ρ̄ +Hρ̄P−ρ̄xHT

x +Hρ̄P−ρ̄ ρ̄HT
ρ̄ + R

)−1

Update
x̂+ = x̂− +K

(
ỹ −Hx x̂

− −Hρ̄ ˆ̄ρ
)

P+xx = (I −KHx )P−xx −KHρ̄P−ρ̄x ; P+x ρ̄ = (I −KHx )P−x ρ̄ −KHρ̄Pρ̄ ρ̄

Prop.

Û̂x(t) = f
(
x̂(t), ˆ̄ρ(t)

)
+ u(t)

ÛPxx (t) = F(t)Pxx (t) + Pxx (t)FT (t) + Px ρ̄ (t)BT
ρ̄ (t) + Bρ̄ (t)Pρ̄x (t)

ÛPx ρ̄ (t) = F(t)Px ρ̄ (t) + Bρ̄ (t)Pρ̄ ρ̄

The equations of the CEKF are reported in Tab. 1. The equations in the first row
describe the evolution of the state of the real system x and the readings of the sensors,
u is the control force and v is the measurement noise with zero mean and covariance
R. The estimated state is integrated in time, along with its covariance, through the
equations in the last row. The variation of the state covariance Pxx depends on H,
the Jacobian of h. When a measurement is obtained by the sensor, the state and the
covariance are updated accordingly, using the equations in the third row. Hx is the
Jacobian of the measurement h and K is computed through the gain equation. The
superscript + indicates the updated values of the variables, while the − the previous
ones. The quantities peculiar to the Consider version of the EKF are:

• the consider variable: ρ̄;
• the cross-covariance between ρ̄ and the state of the system: Pρ̄x (Pxρ̄ = PT

ρ̄x);
• the covariance matrix of ρ̄: Pρ̄ρ̄;
• the Jacobian of f with respect to ρ̄: Bρ̄ .

4 Translational control

A control strategy based on Zero Effort errors [9] has been adopted. The Zero Effort
Miss (ZEM) and the Zero Effort Velocity (ZEV) are defined as the error in position
and velocity at the final instant if no control is applied:

ZEM(t) = ρd − ρ f (t) ; ZEV (t) = Ûρd − Ûρ f (t) (44)

where ρd and Ûρd are the desired final position and velocity, while ρ f (t) and Ûρ f (t)
are the ones obtained if no control is applied from time t onwards. ρ f (t) and Ûρ f (t)
are obtained by integrating the motion from the current time t up to the final time t f :

ρ f = ρ + (t f − t) Ûρ +
∬ t f

t

Üρ(τ)dτ2; Ûρ f = Ûρ +
∫ t f

t

Üρ(τ)dτ (45)
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The control acceleration proportional to the ZEM/ZEV can be written as:

a(t) = kM (t) ZEM(t) + kV (t) ZEV (t) (46)

kM and kV can be tuned to minimize the fuel consumption while guaranteeing the
impact. This optimization, if both the desired position and velocity are defined, gives:

a(t) = 6/t2
go ZEM(t) − 2/tgo ZEV (t) (47)

If no constraint on the final velocity is given, the fuel-optimized acceleration is:

a(t) = 3/t2
go ZEM(t) (48)

The final instant has been defined as the moment at which the spacecraft is no more
approaching the asteroid and is moving farther behind it. This occurs when the scalar
product of the position and the velocity changes sign from negative to positive.

The gain increases with time and goes to infinity at the final instant. Therefore, a
lower boundary on the estimated tgo is applied to prevent this risk. Also, it is affected
by uncertainty, since it is computed from the estimated state. An estimation of its
variance can be obtained using the linearized uncertainty propagation formula, that
can give a safer estimation of the gains, substituting tgo with tgo − 3σtgo :

σ2
tgo
≈
∂tgo
∂x

Σx

(
∂tgo
∂x

)T
;

∂tgo
∂x
=

[
∂tgo

∂ρ
∂tgo

∂ Ûρ

]
=

[
−

ÛρT

Ûρ · Ûρ −
ρT

Ûρ · Ûρ + 2 ρ · Ûρ
( Ûρ · Ûρ)2 Ûρ

]
(49)

Perpendicular ZEM/ZEV In our mission the impact velocity is not imposed: in
order to reach the asteroid, only lateral error are of interest. Accordingly, two new
parameters that discard longitudinal errors are introduced ([8]):
• Perpendicular ZEM: error in position computed at the instant at which the space-

craft misses the asteroid, i.e. when the velocity is normal to the position.
• Perpendicular ZEV: part of the velocity that is normal to the position vector.

Fig. 3 Perpendicular ZEM/ZEV definition (A=asteroid, S=spacecraft)

A

S
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Neglecting the effects of the non-inertial frame, the motion with respect to the
asteroid can be represented in a plane, as in Fig. 3, along with the newly introduced
parameters, that can be computed as a function of the current state:

ZEM⊥ = (ρ · Û̂ρ) Û̂ρ − ρ ; ZEV⊥ = ( Ûρ · ρ̂)ρ̂ − Ûρ (50)

The control formulation will then use the same gains as in the standard ZEM and
ZEV definition (the optimality of this decision has not been proved).

5 Attitude control

Attitude control is needed to point the navigation camera towards the asteroid.

Control law The camera is considered to bemounted on the -z axis of the spacecraft:
the goal of the controller is to have ẑ = ρ̂. The implemented control law is:

mB = −kq sgn
(
qe
w

) [
qe
x qe

y qe
z

]T
− kω ωB (51)

where mB is the control torque, kq and kω are tunable gains and (qe
w, q

e
x, q

e
y, q

e
z ) is

the error quaternion. The angular velocity is introduced to stabilize the spacecraft.
This law is based on the property that the imaginary part of a quaternion represents
the rotation axis. The sign of qe

w accounts for the situation in which ẑ and ρ̂ are more
than 90 deg apart. The error between ρ̂ and ẑ can be computed using its definition:

qe = cos (θ/2) + ê sin (θ/2) (52)

where ê is the axis of rotation and θ is the rotation angle, that can be computed as:

ê = (ρ̂ × ẑ) / ‖ρ̂ × ẑ‖, cos θ = ρ̂ · ẑ, sin θ = ‖ρ̂ × ẑ‖ (53)

Using trigonometric relations, the control law in Eq. 51 becomes:

mB = −
(
kq/

√
2 (1 + ρ̂ · ẑ)

)
ρ̂B × ẑB − kω ωB (54)

In the event that ρ and z are antiparallel, this gives an undefined result, and the error
quaternion is built using an arbitrary unit vector normal to them as (qx, qy, qz) and 0
as qw . The gains have been chosen empirically as: kq = 0.05 and kω = 2.

6 Simulation and results

It is now possible to proceed with the software tool implemented to simulate the
system and to validate the GNC strategy. Fig. 4 presents the software architecture,
with the interconnections of the modules of the simulator. The dynamical model, the
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image analyzer, the Kalman filters and the actuators are implemented in MATLAB®

and Simulink® (lower part of the figure), while the image of the camera is rendered
using Blender® (upper part). The programs communicate through a Python interface.

Fig. 4 Simulator architecture
Blender

camera simulation

Kalman
Filter

Image analyzer
True dynamics

Controller

Relative
position Image

Reconstructed relative positionControl force

Python interface

Blender®

Simulink® Center position (LOS)

6.1 Simulation inputs

The position and velocity of the spacecraft and the orbital parameters of the asteroid
at impact have been taken from Colombo et al. [3]. The initial data for the simulation
have been obtained by backward propagation for 2000 s, starting from impact. The
uncertainties applied to the initial conditions are reported in Tab. 2.

The parameters used for the simulation are:

• camera: FL 152.5 mm, sensor size 13.3 mm 1944 px, FOV 5°, 1 image every 20 s;
• asteroid 3D model: 101955 Bennu (from NASA 3D Resources);
• image analysis algorithm: parallel lines, with max. 20 fitting points;
• 3σ center of mass bias: 1/3 of the expected asteroid diameter (550 m).

6.1.1 Modeling of sensors and actuators

An estimation of the variance of the measurement of the center of the asteroid
has been obtained with a Monte Carlo analysis using the almost spherical asteroid
Bennu. The distance between the estimated and the true centers has been related to
the asteroid image size obtained by the analysis algorithm. This has shown that the
estimation error is proportional to the size of the asteroid, with a ratio around 5%:

3σ[PixelPoscenter] = 5% × ImageSizePx (55)

which means that the 3σ error on the estimation of the asteroid center in the image is
5% of its size (in pixels). Using the optical relations that convert the pixels position
in the image to angles, the variance of azimuth and elevation can be obtained as:

σ2[CameraAngle] = (5% × AstImgSize/3 × PixelSize/FocalLength)2 (56)
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The parameters for all the sensors are reported in Tab. 3. The errors are applied
on each component of the quantity (i.e. coordinate, angle or quaternion component).

Table 2 Initial conditions

Quantity Nominal value Error (1σ)

Position From impact orbit 10/3 km
Velocity From impact orbit 1/3 m/s
Ang. velocity Zero 1 × 10−4 rad/s
Quaternion Cam. pointing to ast. 1 × 10−4

Table 3 Sensor properties

Sensor Error (1σ) Rate

Camera angles Variable (Eq. 56) 1/20 Hz
Star tracker 1 × 10−4 rad 1/5 Hz
Gyroscope 0.1 °/s 1/5 Hz

The spacecraft is considered to be equipped with thrusters and reaction wheels.
A simplified actuator model has been implemented, where the required thrust and
torque are subjected to limitations, as reported in Tab. 4.

Table 4 Actuator assumptions

Property Value for thrust Value for torque

Delay 5 s 0.1 s
Control frequency 0.2 Hz 10 Hz
Saturation limit 5 N 1 mN m
Control level quantization 0.5 N 0.01 mN m
Transient rate limit between control levels 0.5 N/s 1 mNm/s

6.2 Results

This section illustrates the results of Monte Carlo simulations performed to validate
the model of the system and the developed GNC strategy. A set of 1000 initial
conditions with Gaussian distribution has been generated and has been used for the
simulations. For each set of initial conditions, the asteroid has been rotated in a
different random attitude. No angular velocity has been applied to the asteroid.

Single run Before presenting the results of the Monte Carlo analysis, a single run
has been executed to test the performances of the components of the simulator,
including the proposed GNC strategy.

The real states to be estimated by the Kalman filters have been initially set to their
nominal value increased by 1σ, in order to simulate the initial error.

Fig. 5 shows some example images acquired during the simulation. The labels
report the time and distance to impact and the asteroid image diameter. The crosses
represent: blue =CoB, yellow = fitted circle center, green = true center of the asteroid,
red = target point as reconstructed by the filter. The search lines for the fitting points
are in red and the obtained circle is white.
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Fig. 5 Example images acquired during a simulation.

560 s, 1235 km, 10 px 380 s, 838 km, 15 px 200 s, 441 km, 28 px 20 s, 44 km, 278 px

Fig. 6 Lateral position and velocity errors
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Fig. 7 Norm of angular velocity and quaternion errors
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Fig. 6 reports the position error perpendicular to the LOS with its estimated 3σ
limit. The initial significant error decreases during the approach to the asteroid, up
to a value that is sufficiently low to grant impact. The error is always below the 3σ
limit, therefore the filters have given consistent results.

The rotational error and its 3σ limit are plotted in Fig. 7. Considering how
a rotation quaternion is defined, its error, that remains below 1 × 10−4, can be
associated to a rotation of about 0.01 deg, that is sufficiently low to point correctly
towards the asteroid. Yet, it goes beyond the 3σ limit: this could be due to non-
linearities in the attitude equations that should be analyzed in future work.

Fig. 8 Thrust
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Fig. 9 Torque
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Fig. 8 reports the thrust profile until impact: no thrust is required along the z
direction, which points towards the asteroid. This is the expected behavior of the
adopted control strategy.After a transient, torque goes to zero (Fig. 9): this is expected
since the spacecraft is moving along a trajectory almost aligned with the asteroid.

Monte Carlo analysis Running the Monte Carlo simulations, in 99.4% of the cases
the asteroid is hit almost at his center, while in the 0.2% of them it is missed. This can
be seen in Fig. 10, where the green curve represents the 3σ uncertainty ellipse of the
points and the asteroid is schematically drawn as a circle, with center of mass at the
axes origin. Fig. 12 and 13 report the distribution of impact points with respect to the
distance from the center. Fig. 11 shows the time profiles of the impact error, in terms
of norm of perpendicular ZEM. It decreases in time for all the simulations, meaning
that the asteroid has been always detected and the control is working correctly.



An autonomous GNC strategy for asteroid impactor missions 19

Fig. 10 Impact points
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Fig. 11 ZEM⊥

Fig. 12 Density of impact points
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Fig. 13 Cumulative distribution of impact p.
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7 Conclusions and future work

The aim of this work was to design a GNC strategy for a reference impactor mission
for asteroid deflection and to evaluate its performances by developing a computer
simulator. Within the considered initial error in position and velocity, the imple-
mented GNC strategy shows good performances and allows to impact the asteroid
in almost all the simulated cases. Still, the simulated test case is very specific and it
is then necessary to test the GNC strategy on different mission scenarios.

The developed software is versatile: the flexibility of the Simulink® model and
the possibility to tune the parameters of the system allow the user to test different
mission scenarios with minor modifications.

Significant amount ofwork shall be dedicated to develop amore realistic simulator
and to perform a complete mission analysis.

The Blender® model used to simulate the navigation camera shall be improved,
implementing the stars in the background and other phenomena that affect the image
acquired (e.g. asteroid magnitude, camera aperture, noise). Then, the effectiveness
of the image analysis algorithm must be tested using the improved rendering model.
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A more precise estimation of the typical initial uncertainties attainable in this
kind of missions will be performed. Alternatively, the initial error could be gradually
enlarged to find the maximum affordable value.

The simulations have been performed considering that the GNC is active only for
the last 2000 s. Yet, some cameras are able to detect the asteroid earlier: the possibility
of improving the results by executing GNC operations starting at a different time-to-
impact will be evaluated.

A natural continuation of this work will also be the assessment of the deflection
effect attained after impact, considering the achieved impact position and velocity.

In addition, future work will be devoted to run the GNC strategy in a processor-
in-the-loop framework to verify its on-board applicability.
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