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Abstract When designing the control laws for a new program, the aircraft 

manufacturer has to face to numerous constraints: 
New hardware, new system architecture, new structural specificities, new func-

tions, new certification basis. 
More, automatic control theory improves continuously. 
Then the engineers develop, each time, a new set of control laws. It needs some 

time, in development phase, but also during the flight test phase. 
To save time, reduce cost and to minimize risk of such new developments, a 

new (once again, but breaking the rules) concept has been designed: G*, the Ge-
neric Control laws. 

This concept proposes a new way of designing and computing the control laws, 
absolutely generic. The same set of laws is applied to all AIRBUS family mem-
bers, covering almost all the functions, from take-off to landing, in manual and au-
tomatic modes, including all the flight domain protections. 

The interests are numerous:  
• drastic reduction of development lead time, before and during 

flight test campaign 
• strong family behavior 
• best performance and safety level 
• certification easiness 
• technical synergy with other disciplines 

GSTAR is already partially applied on A350. It will be used on any new model, 
and is also introduced on legacy programs depending on opportunities. 
This paper explains the equation cascade method to compute in real time the linear 
part of the control laws. 

 
 
 
 
 
 
 
 
 
 
 

 



2  

1- INTRODUCTION 
 

To design control laws, the classical approach consists in creating a 
mathematical model of the aircraft on a flight domain grid. The control laws are 
designed on each point (state and vector placement, 𝐻𝐻∞, predictive control, …), 
and the resulting gains (feedback, precommands, filters…) are tabulated along the 
flight domain, inside the computer. 

The generic approach needs only a model of a subset of the aerodynamic 
characteristics of the aircraft: tabulation along the flight domain, or equations, de-
pending on the parameter. 
Then the complete set of control laws is a cascade of equations, computing in real 
time all the terms of these functions. The cascade is big and complex, but once 
validated and certified, it doesn’t need any future (further) modification. 
 
Almost all the functions from take-off to landing are considered, interacting with 
the others. Only some specific features are not solved by G* equations, such as vi-
bratory comfort augmentation functions, or Load alleviation functions, that have 
to deal with very specific structural characteristics or sizing constraints, and then 
are not necessarily the same on each family member. 
 
The different control laws are available as some bricks, that can be activated or 
not on any member. These bricks can also evolve in the future, without jeopardiz-
ing the global efficiency, because the other bricks adapt automatically – if needed- 
to the modification. 
 
The lonely features that are coded specifically to the family member are the aero-
dynamic characteristics, the actuators characteristics, the structural filtering acting 
on the sensors, and the time delay of the computing chain, that can be different 
when the hardware architecture is not the same. 
 
G* targets some objectives, defined to control precisely the aircraft, improve safe-
ty and optimize the structural sizing. Due to the high level of accuracy of G* con-
cept ,the objectives or the equations don’t need any tuning in flight tests, then the 
only tests that subsist are the ones to tune precisely the pilot feeling, linked mainly 
to the structural aircraft behavior. 
G* is designed to cope with this particular objective, then some specific tuning 
keys, tunable in real time during flight tests, impact directly the cascade of equa-
tions. 
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2- AIRCRAFT MODEL 
 

The necessary model is composed of 3 elements: 
 

• Flight mechanic equations representing the aircraft 
• Actuator model 
• Hardware filtering chain and calculation or transmission delays 

 
Classically, the flight mechanic linear equations are written on longitudinal axis, 
or on lateral axis, around an equilibrium: 
 
On longitudinal axis: (system 1 equations) 
 

𝑞𝑞 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜑𝜑) 
   𝑁𝑁𝑁𝑁 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 −  cos (𝜃𝜃)

cos (𝜑𝜑)
 

 

�𝛼̇𝛼𝑞̇𝑞� = �
𝑝𝑝𝛼𝛼 1
𝑚𝑚𝛼𝛼 𝑚𝑚𝑞𝑞

� �
𝛼𝛼
𝑞𝑞� + �

0
𝑚𝑚𝛿𝛿𝛿𝛿

� 𝛿𝛿𝛿𝛿 

 
𝑁𝑁𝑁𝑁 = 𝑉𝑉

𝑔𝑔
𝜋𝜋
180

(𝑞𝑞 − 𝛼̇𝛼)  
  
And on lateral axis: (system 2 equations) 

 𝑟𝑟 = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 𝑔𝑔
𝑉𝑉

sin (𝜑𝜑) 
 
    

 
 
 

Where matrix coefficients are obtained from aerodynamic coefficients, dynamic 
pressure, and aircraft weight, inertias and geometric characteristics. 

For instance,  𝑝𝑝𝛼𝛼 = 𝑆𝑆𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑
𝑚𝑚𝑚𝑚

𝐶𝐶𝑧𝑧𝛼𝛼, or 𝑚𝑚𝛿𝛿𝛿𝛿 = 𝑆𝑆𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑
𝐼𝐼𝑦𝑦𝑦𝑦

𝐶𝐶𝑚𝑚𝛿𝛿𝛿𝛿 

 

The actuator model can be very complex when representing all the non-linear 
effects that affect its behavior. To design a control law, only some of them are 
taken into account, because the most extreme ones (stall due to load, free plays, 
dead band zone…) are managed via some specific  functions or protections, that 
are not part of the control laws we are dealing with in this paper. 
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Thus, the model useful for control laws design is composed with a limiter, a 
rate limiter and a linear transfer function. The linear TF is usually a 4th order filter, 
to cope with the frequency characteristics of the actuator in a [0:10Hz] range. 

 

 
   The limiter and RL are used to manage integral terms saturation. For GSTAR 
equations as presented below, only the linear Transfer Function is used. 

 
 

    The complete calculation chain considers sensors – that can be IRS, IMU, ac-
celerometers,…-, the information transmission to the control laws host, and the 
transmission of control laws orders to actuation servo-loop. This numeric chain 
can be represented by the sampling periods of each component, the nominal dura-
tion and jitters of the transmission channels, and the asynchronisms between the 
components. Finally, this complete chain is represented with a global nominal de-
lay, and a global jitter margin. 

 
The information chain from sensors to the laws considers also the filtering of 

the informations: internal filter inside sensors, or specific filtering added into the 
control laws computer, for different purposes: anti-aliasing filter, noise suppres-
sion, structural damping filter,… On a modern aircraft, whose primary structure is 
optimized , the natural flexible modes are low frequency with a low damping ra-
tio, then the structural filtering chain is “complex”, to deal with the vibratory in-
formation, whatever for passive information attenuation or active damping in-
crease. Finally, the complete filtering chain, without actuator Transfer function, 
reaches easily a 8th or 10th order, that implies a phase lag fast evolving with fre-
quency, in the range of aircraft rigid modes. 
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3- GSTAR PRINCIPLE 
 

When considering a simple rigid aircraft motion, the aerodynamic equa-
tions can be linearized in a small state space model: 2X2 in longitudinal, and 4X4 
in lateral. Then the equations to calculate a control law are quite simple, and can 
be solved manually or coded into the computer. But, when considering the numer-
ous delays and filters of the system, its size grows drastically, and the equations 
become very complex.  
Moreover the resulting control law is far from the one obtained on the “simple” 
aircraft. 
 

The classical solving is done numerically with a mathematical software, 
for each tabulated point of the flight domain, and the resulting control law gains 
are tabulated into the computer. 
 

The GSTAR methodology proposes to use a fixed order equivalent filter 
to represent all the delays and filters of the chain, then to consider this equivalent 
filter in the aircraft model. Thus the size of the model keeps manageable, and the 
equations of the control law can be written. The solving of this system is done in 
cascade, giving first the closed loop placement of the equivalent filter, before giv-
ing all the gains of the control law. 
Once obtained, this equations system can be coded into the computer, and calcu-
late the control law gains in real time, based on the tabulated aerodynamic coeffi-
cients and the objectives of the law. 

 
The equivalent filter used by AIRBUS has a frozen structure, that allows to 

adapt in real time to hardware modifications, and that suits to every family mem-
ber. 

 
The second step is to design the control laws. 

Aircraft control laws can be seen in three layers: 
The inner layer shapes the aircraft behavior. It is composed with two families of 
elements: some non-linear controllers whose target is to bring back the aircraft on 
the linear model, and some linear controllers that shape the dynamic behaviour of 
the system. This inner control loop makes up the “manual” control laws. 
The second layer is the guidance loop, and is based on the augmented aircraft, 
shaped by the inner loop. This layer is the core of the Auto-pilot functions. 
The upper layer is the navigation loop, based on the augmented aircraft shaped by 
the second layer. This third level represents the auto-pilot navigation loop. 
Flight domain protections can be seen as second layer functions, taking control on 
human pilot or AP orders. 
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4- TEACHING EXAMPLE 
 
Let us consider system 1 equations.  

This system represents the longitudinal aircraft, once the possible non-linear con-
trollers have managed the non-linear -or not considered- aerodynamic coefficients. 

The inner loop controller will rely on Nz accelerometer and a pitch rate gyrom-
eter. These 2 sensors are high frequency filtered. The information provided by the 
sensors is sent to a computer, hosting the control law. Some structural filtering is 
added on these sensor informations. The computer will send its order to elevator 
actuator computer ,which hosts the elevator servo-loop . 

 
The global delay of the chain, called Tg, can be represented by a 2nd order pade 

filter,  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇𝑇𝑇, 2) =
𝑇𝑇𝑇𝑇2
12 𝑠𝑠²−𝑇𝑇𝑇𝑇2 𝑠𝑠+1
𝑇𝑇𝑇𝑇2
12 𝑠𝑠²+𝑇𝑇𝑇𝑇2 𝑠𝑠+1

 

The global filter applied to the chain, including actuator transfer function, is 
called Tfilt(s). 
Then the resulting filter to consider is 
 𝑇𝑇𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠) = 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇𝑇𝑇, 2) ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) 
 
We can design a 4th order equivalent filter, called TFequi(s), that has the fol-
lowing structure: 
 𝑇𝑇𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) = 𝐵𝐵(𝑠𝑠). 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇𝑒𝑒𝑒𝑒 , 2) where 𝐵𝐵(𝑠𝑠) = 1

𝑠𝑠²
𝜔𝜔0²+2

𝜉𝜉
𝜔𝜔0

𝑠𝑠+1
 and 𝑇𝑇𝑒𝑒𝑒𝑒  is an 

equivalent delay. 
To design it we establish a theorem: 

Given a frequency f1, and 2 values g1 and g2. 
We note 𝜔𝜔1 = 2𝜋𝜋𝜋𝜋1,  and 𝜔𝜔2 = 2𝜋𝜋 𝑓𝑓1

2
 

A 2nd order butterworth filter 𝐵𝐵(𝑠𝑠) = 1
𝑠𝑠²
𝜔𝜔0
2+2𝜉𝜉

𝑠𝑠
𝜔𝜔0

+1
 

verifies 𝑔𝑔1 = 𝑎𝑎𝑎𝑎𝑎𝑎�𝐵𝐵(𝜔𝜔1)�, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔2 = 𝑎𝑎𝑎𝑎𝑎𝑎�𝐵𝐵(𝜔𝜔2)� 

If and only if 
1
𝑔𝑔12
− 4

𝑔𝑔22
= 3 𝑋𝑋2

4
− 3  has a real solution 𝑋𝑋². 

If yes, 𝑋𝑋 = 𝜔𝜔1
2

𝜔𝜔0
2, 

And 𝜉𝜉2 =
1
𝑔𝑔1
2−(1−𝑋𝑋)2

4𝑋𝑋
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We then can fix B(s) to equal 𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠)) on 𝜔𝜔1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔2, and fix 𝑇𝑇𝑒𝑒𝑒𝑒  to 
cope with arg�𝑇𝑇𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔� 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝜔𝜔2 

 
We can write from system 1 equations 

�𝑠𝑠2 − �𝑝𝑝𝛼𝛼 + 𝑚𝑚𝑞𝑞�𝑠𝑠 + 𝑚𝑚𝑞𝑞𝑝𝑝𝛼𝛼 − 𝑚𝑚𝛼𝛼�𝑁𝑁𝑁𝑁 = −
𝑉𝑉
𝑔𝑔

𝜋𝜋
180

𝑝𝑝𝛼𝛼𝑚𝑚𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 

 
Let us define the inner control law: 

𝛿𝛿𝛿𝛿 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇, 2) ∗ 𝐵𝐵(𝑠𝑠) ∗ (𝐾𝐾𝐷𝐷𝑁𝑁𝑧𝑧𝑐𝑐 + 𝐾𝐾𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐾𝐾𝑞𝑞𝑞𝑞 +
𝐾𝐾𝑖𝑖
𝑠𝑠

(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁)) 

Then we have: 
�𝑠𝑠2 − �𝑝𝑝𝛼𝛼 + 𝑚𝑚𝑞𝑞�𝑠𝑠 + 𝑚𝑚𝑞𝑞𝑝𝑝𝛼𝛼 −𝑚𝑚𝛼𝛼�𝑁𝑁𝑁𝑁

= −
𝑉𝑉
𝑔𝑔

𝜋𝜋
180

𝑝𝑝𝛼𝛼𝑚𝑚𝛿𝛿𝛿𝛿 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇, 2) ∗ 𝐵𝐵(𝑠𝑠) ∗ (𝐾𝐾𝐷𝐷𝑁𝑁𝑧𝑧𝑐𝑐 + 𝐾𝐾𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

+ 𝐾𝐾𝑞𝑞𝑞𝑞 +
𝐾𝐾𝑖𝑖
𝑠𝑠

(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁)) 

 
If we consider the following general system of 7th order whose controlled vari-

able is u: 
(𝜃𝜃2𝑠𝑠2 + 𝜃𝜃1𝑠𝑠 + 𝜃𝜃0)(𝑎𝑎𝑠𝑠2 + 𝑏𝑏𝑏𝑏 + 𝑑𝑑)(𝐾𝐾2𝑠𝑠2 + 𝐾𝐾1𝑠𝑠 + 𝐾𝐾0)𝑢𝑢 + 𝑅𝑅.𝑢𝑢

= (𝜃𝜃2𝑠𝑠2 − 𝜃𝜃1𝑠𝑠 + 𝜃𝜃0)(𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑐𝑐 + 𝐾𝐾𝑢𝑢𝑢𝑢 + 𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠 +
𝐾𝐾𝑢𝑢𝑢𝑢
𝑠𝑠

(𝑢𝑢𝑐𝑐 − 𝑢𝑢)) 

Then the closed loop system is:      
          (v) 
(𝑇𝑇7𝑠𝑠7 + 𝑇𝑇6𝑠𝑠6 + 𝑇𝑇5𝑠𝑠5 + (𝑇𝑇4 − 𝜃𝜃2𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)𝑠𝑠4 + (𝑇𝑇3 − 𝜃𝜃2𝐾𝐾𝑢𝑢 + 𝜃𝜃1𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)𝑠𝑠3

+ (𝑇𝑇2 + 𝜃𝜃2𝐾𝐾𝑢𝑢𝑢𝑢 + 𝜃𝜃1𝐾𝐾𝑢𝑢 − 𝜃𝜃0𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)𝑠𝑠2 + (𝑇𝑇1 − 𝜃𝜃1𝐾𝐾𝑢𝑢𝑢𝑢 − 𝜃𝜃0𝐾𝐾𝑢𝑢)𝑠𝑠
+ 𝜃𝜃0𝐾𝐾𝑢𝑢𝑢𝑢)𝑢𝑢 = (𝜃𝜃2𝑠𝑠2 − 𝜃𝜃1𝑠𝑠 + 𝜃𝜃0)(𝐾𝐾𝑢𝑢𝑢𝑢𝑠𝑠 + 𝐾𝐾𝑢𝑢𝑢𝑢)𝑢𝑢𝑐𝑐 

 
Whose terms can be calculated in a specific function  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝐵𝐵𝐵𝐵 

[𝑇𝑇1,𝑇𝑇2,𝑇𝑇3,𝑇𝑇4,𝑇𝑇5,𝑇𝑇6,𝑇𝑇7,𝜃𝜃0,𝜃𝜃1,𝜃𝜃2] = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎, 𝑏𝑏,𝑑𝑑,𝑇𝑇,𝐾𝐾0,𝐾𝐾1,𝐾𝐾2,𝑅𝑅) 
Content: 

𝜃𝜃2 =
𝑇𝑇²
12

 

𝜃𝜃1 =
𝑇𝑇
2

 

𝜃𝜃0 = 1.0 
𝑇𝑇7 = 𝑎𝑎𝜃𝜃2𝐾𝐾2 
𝑇𝑇6 = 𝑎𝑎𝜃𝜃2𝐾𝐾1 + (𝑏𝑏𝜃𝜃2 + 𝑎𝑎𝜃𝜃1)𝐾𝐾2 
𝑇𝑇5 = 𝑎𝑎𝜃𝜃2𝐾𝐾0 + (𝑏𝑏𝜃𝜃2 + 𝑎𝑎𝜃𝜃1)𝐾𝐾1 + (𝑑𝑑𝜃𝜃2 + 𝑏𝑏𝜃𝜃1 + 𝑎𝑎𝜃𝜃0)𝐾𝐾2 
𝑇𝑇4 = (𝑏𝑏𝜃𝜃2 + 𝑎𝑎𝜃𝜃1)𝐾𝐾0 + (𝑑𝑑𝜃𝜃2 + 𝑏𝑏𝜃𝜃1 + 𝑎𝑎𝜃𝜃0)𝐾𝐾1 + (𝑑𝑑𝜃𝜃1 + 𝑏𝑏𝜃𝜃0)𝐾𝐾2 
𝑇𝑇3 = (𝑑𝑑𝜃𝜃2 + 𝑏𝑏𝜃𝜃1 + 𝑎𝑎𝜃𝜃0)𝐾𝐾0 + (𝑑𝑑𝜃𝜃1 + 𝑏𝑏𝜃𝜃0)𝐾𝐾1 + 𝑑𝑑𝜃𝜃0𝐾𝐾2 
𝑇𝑇2 = (𝑑𝑑𝜃𝜃1 + 𝑏𝑏𝜃𝜃0)𝐾𝐾0 + 𝑑𝑑𝜃𝜃0𝐾𝐾1 
𝑇𝑇1 =  𝑑𝑑𝜃𝜃0𝐾𝐾0 + 𝑅𝑅 
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The system has 7 dynamics. In closed loop, 3 of these dynamics are placed by 
the control law on the objectives,  

(𝑠𝑠2 + 2𝜀𝜀𝜀𝜀𝜀𝜀 + 𝜔𝜔2) �𝑠𝑠 +
1
𝜏𝜏
� = 𝜇𝜇3𝑠𝑠3 + 𝜇𝜇2𝑠𝑠² + 𝜇𝜇1𝑠𝑠 + 𝜇𝜇0 

 
The 4 last ones correspond to the equivalent filter pole placement. 

(𝑥𝑥4𝑠𝑠4 + 𝑥𝑥3𝑠𝑠3 + 𝑥𝑥2𝑠𝑠2 + 𝑥𝑥1𝑠𝑠 + 𝑥𝑥0) 
 
 
 
So, the left part of (v) can be identified to: 

           
(𝑥𝑥4𝑠𝑠4 + 𝑥𝑥3𝑠𝑠3 + 𝑥𝑥2𝑠𝑠2 + 𝑥𝑥1𝑠𝑠 + 𝑥𝑥0). �𝜇𝜇3𝑠𝑠

3 + 𝜇𝜇2𝑠𝑠² + 𝜇𝜇1𝑠𝑠
+ 𝜇𝜇0�.𝑢𝑢 

 
This identification can be written via an equations cascade, written in a specific 

function 
[𝐾𝐾𝑢𝑢 ,𝐾𝐾𝑢𝑢𝑢𝑢 ,𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢]
= 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑙𝑙𝑙𝑙𝑙𝑙_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜7(𝜇𝜇0, 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3,𝑇𝑇1,𝑇𝑇2,𝑇𝑇3,𝑇𝑇4,𝑇𝑇5,𝑇𝑇6,𝑇𝑇7,𝜃𝜃0,𝜃𝜃1,𝜃𝜃2) 

Content: 

𝑥𝑥4 =
𝑇𝑇7
𝜇𝜇3

 

 

𝑥𝑥3 =
𝑇𝑇6 − 𝑥𝑥4𝜇𝜇2

𝜇𝜇3
 

 

𝑥𝑥2 =
𝑇𝑇5 − (𝑥𝑥4𝜇𝜇1 + 𝑥𝑥3𝜇𝜇2)

𝜇𝜇3
 

 

𝐶𝐶1 =
𝑇𝑇4 − (𝑥𝑥4𝜇𝜇0 + 𝑥𝑥3𝜇𝜇1 + 𝑥𝑥2𝜇𝜇2)

𝜇𝜇3
 

 

𝐶𝐶2 =
𝑇𝑇3 − 𝑥𝑥3𝜇𝜇0 − 𝑥𝑥2𝜇𝜇1

𝜇𝜇3
 

 

𝐶𝐶3 = 𝐶𝐶2 −
𝜇𝜇2𝐶𝐶1
𝜇𝜇3

 

 

𝐾𝐾11 = 𝜃𝜃1 +
𝜇𝜇2𝜃𝜃2
𝜇𝜇3
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𝐾𝐾12 =
𝜇𝜇1𝜃𝜃2
𝜇𝜇3

− 𝜃𝜃0 −
𝜇𝜇2(𝜃𝜃1 + 𝜇𝜇2

𝜇𝜇3
𝜃𝜃2)

𝜇𝜇3
 

 
 
𝐾𝐾13 = 𝜃𝜃2 
 
 
𝐷𝐷11 = 𝑥𝑥2𝜇𝜇0 + 𝜇𝜇1𝐶𝐶1 + 𝜇𝜇2𝐶𝐶3 − 𝑇𝑇2 
 
 

𝐾𝐾21 = 𝜃𝜃0 −
𝜇𝜇1𝜃𝜃2
𝜇𝜇3

 

 

𝐾𝐾22 =
𝜇𝜇1 �𝜃𝜃1 + 𝜇𝜇2𝜃𝜃2

𝜇𝜇3
� − 𝜇𝜇0𝜃𝜃2

𝜇𝜇3
 

 
𝐾𝐾23 = 𝜃𝜃1 
 
𝐷𝐷22 = 𝑇𝑇1 − 𝜇𝜇0𝐶𝐶1 − 𝜇𝜇1𝐶𝐶3 
 

𝐾𝐾31 =
−𝜇𝜇0𝜃𝜃2
𝜇𝜇3

 

𝐾𝐾32 =
𝜇𝜇0(𝜃𝜃1 + 𝜇𝜇2𝜃𝜃2

𝜇𝜇3
)

𝜇𝜇3
 

 
𝐾𝐾33 = −𝜃𝜃0 
 
𝐷𝐷33 = −𝜇𝜇0𝐶𝐶3 

 
 
Thus we obtain a 3 equations system with 3 unknowns 𝐾𝐾𝑢𝑢,𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ,𝐾𝐾𝑢𝑢𝑢𝑢  
 

𝐾𝐾11𝐾𝐾𝑢𝑢 + 𝐾𝐾12𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝐾𝐾13𝐾𝐾𝑢𝑢𝑢𝑢 = 𝐷𝐷11 
𝐾𝐾21𝐾𝐾𝑢𝑢 + 𝐾𝐾22𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝐾𝐾23𝐾𝐾𝑢𝑢𝑢𝑢 = 𝐷𝐷22 
𝐾𝐾31𝐾𝐾𝑢𝑢 + 𝐾𝐾32𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝐾𝐾33𝐾𝐾𝑢𝑢𝑢𝑢 = 𝐷𝐷33 

 
Whose determinants are: 

𝐷𝐷 = 𝐾𝐾11 �
𝐾𝐾22 𝐾𝐾23
𝐾𝐾32 𝐾𝐾33

� − 𝐾𝐾21 �
𝐾𝐾12 𝐾𝐾13
𝐾𝐾32 𝐾𝐾33

� + 𝐾𝐾31 �
𝐾𝐾12 𝐾𝐾13
𝐾𝐾22 𝐾𝐾23

� 

 

𝑅𝑅𝑅𝑅 = 𝐷𝐷11 �
𝐾𝐾22 𝐾𝐾23
𝐾𝐾32 𝐾𝐾33

� − 𝐷𝐷22 �
𝐾𝐾12 𝐾𝐾13
𝐾𝐾32 𝐾𝐾33

� + 𝐷𝐷33 �
𝐾𝐾12 𝐾𝐾13
𝐾𝐾22 𝐾𝐾23

� 
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𝑅𝑅𝑅𝑅 = 𝐾𝐾11 �
𝐷𝐷22 𝐾𝐾23
𝐷𝐷33 𝐾𝐾33

� − 𝐾𝐾21 �
𝐷𝐷11 𝐾𝐾13
𝐷𝐷33 𝐾𝐾33

� + 𝐾𝐾31 �
𝐷𝐷11 𝐾𝐾13
𝐷𝐷22 𝐾𝐾23

� 

 

𝑅𝑅𝑅𝑅 = 𝐾𝐾11 �
𝐾𝐾22 𝐷𝐷22
𝐾𝐾32 𝐷𝐷33

� − 𝐾𝐾21 �
𝐾𝐾12 𝐷𝐷11
𝐾𝐾32 𝐷𝐷33

� + 𝐾𝐾31 �
𝐾𝐾12 𝐷𝐷11
𝐾𝐾22 𝐷𝐷22

� 

 
D cannot be zero if the aircraft is controllable. 
And we finally obtain: 

𝐾𝐾𝑢𝑢 =
𝑅𝑅𝑞𝑞
𝐷𝐷

 

𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡 =
𝑅𝑅𝑧𝑧
𝐷𝐷

 

𝐾𝐾𝑢𝑢𝑢𝑢 =
𝑅𝑅𝑖𝑖
𝐷𝐷

 
and: 

𝑥𝑥1 = 𝐶𝐶1 −
𝜃𝜃2𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝜇𝜇3

 

 

𝑥𝑥0 = 𝐶𝐶3 −
𝜃𝜃2𝐾𝐾𝑢𝑢
𝜇𝜇3

+
�𝜃𝜃1 + 𝜇𝜇2𝜃𝜃2

𝜇𝜇3
�𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝜇𝜇3
 

 
This equation cascade is easily applied to our system to compute the gains of 

the inner loop. 

Considering  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇, 2) =
𝑇𝑇2
12𝑠𝑠²−𝑇𝑇2𝑠𝑠+1
𝑇𝑇²
12𝑠𝑠²+𝑇𝑇2𝑠𝑠+1

 

 
And 𝐵𝐵(𝑠𝑠) = 1

𝑎𝑎𝑎𝑎²+𝑏𝑏𝑏𝑏+𝑑𝑑
 

 
we note: 𝐴𝐴 = −𝑉𝑉

𝑔𝑔
𝜋𝜋
180

𝑝𝑝𝛼𝛼𝑚𝑚𝛿𝛿𝛿𝛿 , 𝐾𝐾0 = 𝑚𝑚𝑞𝑞𝑝𝑝𝛼𝛼 − 𝑚𝑚𝛼𝛼, 𝐾𝐾1 = −�𝑝𝑝𝛼𝛼 + 𝑚𝑚𝑞𝑞�,𝐾𝐾2 = 1.0 
 
Then we have: 

[𝑇𝑇1,𝑇𝑇2,𝑇𝑇3,𝑇𝑇4,𝑇𝑇5,𝑇𝑇6,𝑇𝑇7,𝜃𝜃0,𝜃𝜃1,𝜃𝜃2] = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎, 𝑏𝑏,𝑑𝑑,𝑇𝑇,𝐾𝐾0,𝐾𝐾1,𝐾𝐾2, 0.0) 
We note now the objectives: 

𝜇𝜇3 = 1.0 

𝜇𝜇2 = 2𝜉𝜉𝜉𝜉 +
1
𝜏𝜏

 

𝜇𝜇1 = 𝜔𝜔² +
2𝜉𝜉𝜉𝜉
𝜏𝜏

 

𝜇𝜇0 =
𝜔𝜔²
𝜏𝜏
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We obtain: 
[𝐾𝐾𝑢𝑢 ,𝐾𝐾𝑢𝑢𝑢𝑢 ,𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢]
= 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑙𝑙𝑙𝑙𝑙𝑙_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜7(𝜇𝜇0, 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3,𝑇𝑇1,𝑇𝑇2,𝑇𝑇3,𝑇𝑇4,𝑇𝑇5,𝑇𝑇6,𝑇𝑇7,𝜃𝜃0,𝜃𝜃1,𝜃𝜃2) 

 
and 

𝐾𝐾𝑁𝑁𝑁𝑁 =
𝐾𝐾𝑢𝑢 + 𝑝𝑝𝛼𝛼𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝐴𝐴
 

𝐾𝐾𝑞𝑞 =
𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑚𝑚𝛿𝛿𝛿𝛿

 

𝐾𝐾𝑖𝑖 =
𝐾𝐾𝑢𝑢𝑢𝑢
𝐴𝐴

 
 
 
 
The precommand term is written from (v) to compensate the real mode,  
 

𝐾𝐾𝐷𝐷 = 𝜏𝜏𝐾𝐾𝑖𝑖 
 
 
The augmented aircraft transfer function becomes 
 

�
𝑥𝑥4
𝑥𝑥0
𝑠𝑠4 +

𝑥𝑥3
𝑥𝑥0
𝑠𝑠3 +

𝑥𝑥2
𝑥𝑥0
𝑠𝑠2 +

𝑥𝑥1
𝑥𝑥0
𝑠𝑠 + 1� .�

𝑠𝑠2

𝜔𝜔²
+

2𝜀𝜀𝜀𝜀
𝜔𝜔

+ 1� .𝑁𝑁𝑧𝑧

= (
𝑇𝑇2

12
𝑠𝑠² −

𝑇𝑇
2
𝑠𝑠 + 1)𝑁𝑁𝑁𝑁𝑁𝑁 

 
Thus we can have a second layer controller to define Nzc, and use the same 

equations cascade method to compute in real time the components of this second 
layer. 

 
For example, 𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐾𝐾𝑣𝑣𝑣𝑣𝑣𝑣(𝐾𝐾𝑧𝑧𝑧𝑧(𝑍𝑍𝑍𝑍 − 𝑍𝑍) − 𝐷𝐷𝑉𝑉𝑧𝑧) + 𝐾𝐾𝑛𝑛𝑛𝑛𝑁𝑁𝑁𝑁 + 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑𝑁𝑁𝑁̇𝑁 allows to 

define a “altitude holder” control law. 
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5- GSTAR ADVANTAGES 
 
This method brings many advantages for our control laws design. 
 

Technically: 
• the equations cascades define precisely where all the aircraft 

dynamics are placed, and allow to modify the objectives of the 
law to cope with some stability margins constraints. 

• The efficiency of the law is guaranteed, because every “per-
turbating” parameter is taken into account. The equivalent de-
lay can be automatically adapted when the hardware path is 
varying. Thus, objectives of the law are the only tuning pa-
rameters to be adjusted during flight test campaign. It simpli-
fies drastically the way to perform the flight tests. 

• A specific aerodynamic model can be developed and identified 
in flight test for the control laws design need. It is simpler and 
faster than building a complete aerodynamic model. 

 
 
Strategically: 

•  All family members have the same control laws, that guaran-
tee the homogeneity, and the same level of safety. 

• No regression risk when developing a new model. 
• An innovative function can easily be retrofitted on any mem-

ber. 
 

 
 
 


