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Abstract This paper focuses on motion prediction for a ship navigating through
sea swell. Ship motion prediction may be useful for helicopter maritime operations,
notably for search and rescue missions. An efficient prediction method based on
adaptive notch filters (ANF) is proposed for non stationary perturbations. Classic
methods of prediction are reviewed for comparison. An application using real ship
motion data is considered in a performance evaluation. Finally, a comparative anal-
ysis based on prediction performance and real-time implementation constraints is
presented.

1 Introduction

1.1 Context

Search and rescue (SAR) missions are among the most difficult technological and
human challenges. This is especially true when aimed at rescuing people on board
a sinking boat. Hoisting from a helicopter remains the only solution to quickly in-
tervene and evacuate people in distress. This operation is often challenging for the
pilot because it forces him to stabilize the helicopter above a moving boat and to
precisely position the rescuer on the deck. Weather conditions are often unfavor-
able, resulting in substantial movement of the boat and its mast, if it has one. In
this situation, the pilot’s workload is very high, and the risk of collision between the
rescuer and the boat is not negligible. Knowing the boat’s movement over a time
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horizon of a few seconds can be very useful to make the pilot’s task easier and to
reduce the risk of collision. In addition, sending this prediction information to the
helicopter autopilot can help to stabilize the machine in a safe area and accurately
bring the rescuer to the estimated landing point. Prediction of boat movements is
therefore essential to increase the safety of SAR missions. Another example of the
potential utility of ship motion prediction is for missions of maritime pilot hoisting
on tanker ships. During night operations, the long decks of tankers can be mistaken
with the horizon. Large and slow movements of the ship can disorient the helicopter
pilot and lead to dangerous control of the machine. Knowing the ship attitude a few
seconds in advance can significantly help the autopilot to follow the ship, which will
allow the pilot to focus his attention on the safety aspects of the hoisting operation.

Fig. 1: Helicopter hoist operation during a SAR mission

1.2 Objective and Contribution

The context of our work is the navigation and control of helicopters with avoid-
ance of environmental perturbation effects. In SAR missions, ship movements are
considered to be environmental perturbations. It is often crucial to predict the per-
turbation signals to compensate for or address their effects. For safe stabilization of
a helicopter moving above a ship, adaptive prediction is well suited for perturbation
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compensation and avoidance of deviations of ship movements. Several prediction
methods (ARMA, MCA and ANF) will be presented and compared.

Our main objective is to obtain a good prediction of the main perturbations over
a few seconds to compensate for their effect on control to achieve a good trajectory
following [1, 2, 3]. We focus on the prediction of the attitudes and linear speeds
of a moving ship. Then, our main contribution is the definition of a pertinent and
efficient prediction method.

In the context of the estimation of perturbations [4], specific features have to be
considered. For a moving ship excited by swell, the perturbations are nonstationary
and their frequency spectrum is composed of narrow bands with slowly varying fre-
quencies and varying amplitudes and phases. Adaptive notch filters are well suited
for the prediction of nonstationary narrow band perturbations [4, 5].

This paper is organized as follows. After this introduction, section 2 is devoted
to related previous work in literature and background definition. In section 3, we
present several prediction approaches using some well-known methods, such as
ARMA modeling and minor component analysis (MCA), and then propose the use
of adaptive notch filters (ANF). The proposed approach, based on ANF, is shown to
be the most efficient and fast adaptive predictor. Section 4 presents an application
of the methods on real data acquired from a ship maneuvering under swell perturba-
tion. Finally, a comparative study is conducted. This study emphasizes the interest
in using the proposed method based on ANF for ship motion prediction.

2 Background and Previous Work

2.1 Background

Figure 1 presents the environment of a helicopter hoist operation in a SAR mission.
Given a boat (coordinate system Rb: (−→x b,

−→y b,
−→z b)) navigating on a rough sea with

speed
−→
V b, swell perturbation causes the boat to rotate around −→x b (roll axis) and

−→y b (pitch axis). The final objective consists of guiding the helicopter (coordinate
system Rh: (−→x h,

−→y h,
−→z h)) so that the rescuer (in orange in the figure 1) hanging on

the hoisting rope can land safely on the boat aft deck.
We propose to predict boat motion with a prediction horizon of a few seconds.

In the future, this information will be used by the helicopter autopilot to ensure a
safe hoist operation. Ship motions are typically characterized by attitudes (roll φ

and pitch θ ) and translation speeds at the center of gravity (longitudinal V xb, lateral
V yb and vertical V zb). These movements are caused by the swell encountered by the
ship and are explained by sea-keeping theory. In this study, the signals characterizing
ship movements are provided by an inertial measurement unit (IMU) located at the
center of mass. The roll angle of a ship navigating on a formed sea is presented in
figure 2.
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Fig. 2: Roll attitude angle measurement φ(t) and its spectrum evolution with time

When looking at the time evolution of the roll spectrum in figure 2, the signal
appears to be nonstationary in amplitudes and phases. The nonstationarity is due to
changes in sea state or modification of the track followed by the ship. Clearly, the
signals are composed of a limited number of frequencies with varying amplitudes
in the range 0.05Hz < fi < 0.25Hz.

2.2 Previous work

There are two common approaches to predict boat movement. The first is to
build a dynamic model capable of capturing the main characteristics of the sys-
tem {boat + environment}. In this case, the entire system must be modeled, includ-
ing uncertain stochastic processes (swell, wind), the dynamic behavior of the ship,
and the unknown dynamics. Prediction methods using such models are very depen-
dent on the reliability of their identification. A complete modeling of boat dynamics
requires precise knowledge of hydrodynamic parameters, as well as the sea state
around the boat. In practice, it would be tedious, if not impossible, to build a pre-
cise model since many parameters (frequency of swell, angle of attack of the swell,
configuration of the ship, etc.) are not available.
Alternatively, the system can be handled as a black box and be approximated by a
model that implicitly captures its characteristics. This model can be represented in
the time domain by a linear recursive sequence with coefficients that are estimated
over time. Time prediction of motions are then generated using the temporal model
without building or solving dynamic equations intrinsic to the ship and on the basis
of only previous measurements of motion.

2.2.1 Time prediction based on the state model

The dynamics of vessels have been studied in many works in past decades. Sea-
keeping theory studies the dynamics of a ship navigating on the sea and assumes
that the ship’s movements are oscillating around a point of equilibrium [6]. More-
over, this theory suggests that swell height is a Gaussian stochastic process with
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zero mean. However, this hypothesis is too strong, which limits the application of
sea-keeping theory for studying ship dynamics. Motion prediction using ship state
models has been extensively studied, and significant efforts have been made to ad-
dress various practical problems. Triantafyllou et al. [7] used the Kalman filtering
technique to predict six states of a ship. They used a precise state model that re-
quires prior knowledge of hydrodynamic data. Substantial computational effort is
necessary to extract these data. In addition, several transfer functions between the
ship’s movements and the swell elevation are irrational functions with no minimum
of phase, making their use challenging. Lainiotis et al. [8] developed a method for
estimating ship movements based on a state model, but the method relies entirely on
prior knowledge of a large number of intrinsic parameters.

2.2.2 Time prediction based on the temporal model

The use of time series is an alternative way to achieve ship motion prediction. Only
past records of movement are needed to generate the time prediction. The construc-
tion of a temporal model involves the determination of the orders of the model as
well as its parameters. For example, X. Yang proposed a variant of an online autore-
gressive predictor that produces accurate prediction results for simulated data (error
within 10% for 12.5 second prediction) [9]. An interesting autoregressive external
input model (ARX) was used for real-time motion prediction of a 210 ton ship in
1979 [10]. The wave height in front of the ship (external input) was obtained via
a pressure sensor located at the bulbous bow. The results showed good prediction
of amplitudes for 2 to 4 seconds in advance and good prediction of phases for 8 to
10 seconds in advance. A prediction algorithm using minimal component analysis
(MCA) of the signal of movement was introduced by Zhao et al. [11]. The gener-
ated prediction requires considerable computational resources to update the model
parameters, which makes it complicated to implement on board. A sinusoidal ap-
proach to ship motion was developed by Ra et al. Roll motion is considered to be
a sinusoid whose slow-varying frequency is estimated in real time by a recursive
least squares algorithm [12]. The amplitude and phase of the sinusoid are assumed
to remain constant.

3 Prediction Methods

Because of the availability of only previous signal values, prediction methods are
based on statistical analysis. The most commonly used method generates a d-step-
ahead prediction from an autoregressive moving average model (ARMA) that is
identified recursively. Another much less common method uses a variant of princi-
pal component analysis (PCA or Karhunen-Loeve transformation) that is known as
minor component analysis. In both cases, the past signal is processed to identify its
generator model (ARMA) or to extract its principal components (PCA). Then, we
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use this knowledge to generate a prediction over a few seconds. The characteristics
of the signal are assumed to be constant over the prediction period. A third approach
considers ship movements as the sum of sinusoidal signals. Real-time estimation of
the frequencies, amplitudes and phases of these sinusoidal components leads to the
construction of the signal spectrum with time. The spectrum parameters are then
frozen to generate time predictions. The difficulty is to perform real-time spectral
analysis with time-varying parameters. Adaptive notch filters provide a method for
frequency tracking for narrow band signals. Amplitudes and phases can then be
estimated using a weighted recursive least squares algorithm.

Note that in these 3 methods, no additional information (hydrodynamic parame-
ters, boat speed and track, wave spectrum, etc..) are required to generate the predic-
tion.

3.1 ARMA Predictions

Autoregressive moving average model:
An autoregressive moving average (ARMA) model of order (na,nc) is defined as:

yk =−
na

∑
i=1

aiyk−i +
nc

∑
i=1

ciek−i + ek (1)

where ai and ci are the coefficients of the model and ek is white noise.

This model supposes that the signal value at instant k is a linear combination of
its past values. Before using equation 1 for prediction, parameters ai and ci need to
be identified.

Parameter identification:
Parameter identification consists of minimizing the prediction error defined as:

εk = yk−φ
T
k θ̂ (2)

where:

• φk = [−yk−1 . . .− yk−na ek−1 . . .ek−nc ]
T the regression vector

• θ̂ = [â1 . . . âna ĉ1 . . . ĉnc ]
T is the parameter vector estimate

In our case, the signal is nonstationary, and the ARMA model parameters are
time varying. Consequently, the minimization of εk is achieved with a weighting
that favors the most recent past values. A forgetting factor λ < 1 is then added to
the minimization.
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The criterion to minimize can be written as:

JN =
1
N

N

∑
k=1

λ
N−k (yk−φ

T
k θ̂
)2

(3)

where N is the number of available signal samples.

The least squares (LS) solution of the minimization is given by the following
equation:

θ̂ = arg
θ

min(JN) =

[
1
N

N

∑
k=1

λ
N−k

φkφ
T
k

]−1[
1
N

N

∑
k=1

λ
N−k

φkyk

]
(4)

To estimate the parameters vector θ with equation 4, signal covariance matrix
1
N

N
∑

k=1
φkφ T

k must be computed and inverted at each step. For large values of N, this

operation can require considerable computational effort (O(N3)). It is judicious to
use the recursive form of the least squares (RLS) algorithm and the previous esti-
mation of θ̂ .

Real-time estimation of the parameters vector can be performed using the weighted
recursive least squares algorithm (WRLS) given by [13]:

θ̂k = θ̂k−1 +
Fk−1φk

λ+φT
k Fk−1φk

·
(
yk−φ T

k θ̂k−1
)

Fk =
1
λ

[
Fk−1−

Fk−1φT
k φkFk−1

λ+φT
k Fk−1φk

] (5)

where Fk is the adaptation gain, starting at a large value (typically 100) and fad-
ing to zero when the prediction error εk becomes small. The forgetting factor λ is
usually chosen between 0.98 and 0.995.

Model order selection:
The selection of the model order is crucial: a low order will not capture all system
dynamics and leads to high prediction error variance, whereas a high order implies
large computational effort.

Many criteria are available in the literature to help with order selection. The
Akaike information criterion (AIC) is widely used:

AIC(na,nc) = log σ̂
2 +

2(na +nc)

N
(6)
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where σ̂2 the prediction error covariance estimate defined as:

σ̂
2 =

1
N−na−nc

N

∑
k=na+nc+1

(
yk−φ

T
k θ̂k−1

)2
(7)

The first term of equation 6 measures the model fit based on the error prediction
covariance σ̂ . The second term is a penalty for model complexity (na, nc high). The
model orders (na,nc) corresponding to the lowest AIC value are selected.

Unfortunately, AIC cannot be implemented in our problem; this criterion tends
to overestimate the model order and the estimate is not consistent for large N (which
is our case). In fact, the probability of selecting the true model does not tend to one
as N tends to infinity. According to J. Kuha [14], this probability is upper bounded
by 0.84 .

G. Schwarz [15] suggests the Bayesian information criterion (BIC), which pro-
vides a consistent estimate of (na,nc) and is defined as:

BIC(na,nc) = log σ̂
2 +

(na +nc) logN
N

(8)

Time prediction at instant k+d:
The prediction of yk, the signal at instant k, uses the last identified parameters and
the last na past values of yk:

ŷk =−â1yk−1− â2yk−2 . . .− ânayk−na + ĉ1ek−1 + ĉ2ek−2 . . .+ ĉncek−nc (9)

Then, for the d-step-ahead prediction ŷk+d , we use the previous predictions
ŷk+d−i to compute:

ŷk+d =−â1ŷk+d−1− â2ŷk+d−2 . . .− âna ŷk+d−na + ĉ1ek−1 . . .+ ĉncek−nc (10)

We suppose that the parameters are constant over the prediction horizon, meaning
that the signal is assumed to be stationary over this period.

3.2 Minor Component Analysis and Prediction

Principal component analysis (PCA) is a statistical method that aims to transform
observations of correlated variables into linearly uncorrelated variables. These new
variables are called principal components or principal axes. This analysis reduces
the number of variables used to describe a process and makes the information less
redundant.
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The name ”principal axes” is interesting as it refers to the vocabulary of mechan-
ics. Indeed, principal axes correspond to vectors that maximize the projected inertia
of point clouds on themselves. It is equivalent to stating that the principal axes are
vectors that minimize the moment of inertia around themselves (the distribution of
mass). For example, the principal axis of a helicopter is parallel to the longitudinal
axis, as the moment of inertia around this axis is minimum, which explains the rel-
atively high roll rate compared to the pitch or yaw axes. Minor component analysis
focuses on the minor axes, where the projected inertia on themselves is minimum.

Notations
Let variables Y1, Y2, ... , YP represent signal yk during time-shifted windows of length
N.

We define the variables Yj, with j ∈ [1;P], as follows:

Y1 = [y1 y2 · · ·yN ]
T

Y2 = [y2 y3 · · ·yN+1]
T

...
YP = [yP yP+1 · · ·yP+N−1]

T

(11)

We suppose that Yj are centered, that is, the expected values of these variables have
been subtracted.

The point cloud associated with the centered variables can be written in matrix
form:

M = [Y1 Y2 · · · YP] =


y1 y2 · · · yP
y2 y3 · · · yP+1
...

...
...

yN yN+1 · · · yP+N−1

 (12)

Component Analysis
The projection of point cloud M on a unit vector u ∈ RP×1 is Πu(M) = M.u. The
projected inertia of the point cloud on vector u is defined as:

IM(u) = 1
N Πu(M)T Πu(M) = 1

N uT MT Mu = uTCu (13)

where C = 1
N MT M ∈ RP×P is the covariance matrix of variables Yj.

We are searching for the vector u that minimizes (or maximizes) the projected iner-
tia IM(u).

The correlation function of signal yk is defined in discrete time as:

Ryy(k) = E
[
Y T

j Yj+k
]
=

1
N

N+ j−1

∑
i= j

yi · yi+k f or j ∈ [1;P] (14)
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The autocorrelation matrix of the signal is defined as:

Ry =


Ryy(0) Ryy(1) Ryy(2) · · · Ryy(P−1)
Ryy(1) Ryy(0) Ryy(1) · · · Ryy(P−2)
Ryy(2) Ryy(1) Ryy(0) · · · Ryy(P−3)

...
...

...
. . .

...
Ryy(P−1) Ryy(P−2) Ryy(P−3) · · · Rxx(0)

 (15)

According to equations 13, 14 and 15, we note that the autocorrelation matrix Ry
and the covariance matrix of Yj variables C are equal. Moreover, Ry is symmet-
ric real; consequently, it can be diagonalized in an orthonormal basis composed of
eigenvectors:

Ry =V ∆V T (16)

where:

• V = [V1 V2 · · · Vd · · · VP] ∈ RP×P matrix of eigenvectors
• ∆ = diag(λ1,λ2, · · · ,λd , · · · ,λp) ∈ RP×P matrix of eigenvalues

We suppose that Ry eigenvalues are ordered in the following manner:

λ1 ≤ λ2 ≤ ·· · ≤ λd ≤ ·· · ≤ λP (17)

The projection of inertia on vector u becomes:

IM(u) = uT Ryu = uTV ∆V T u = QT ∆Q (18)

where Q is unit vector u in the eigenvector basis (V1,V2, · · · ,Vn):

Q(u) =V T u = [q1 · · · qP]
T (19)

The projection of inertia on vector u becomes:

IM(u) =
P

∑
k=1

λiq2
i ≤ λP

P

∑
k=1

q2
i ≤ λP (20)

The projected inertia IM(u) is upper bounded by λP and is reached when u =VP.
This is the principal axis, and the variance of the projection of the point cloud on
VP is λP. The second axis corresponds to the VP−1 eigenvector (projection variance
λP−1) and is orthogonal to the principal axis, and so on up to V1, which corresponds
to the minor axis with the lowest projection variance λ1.
The eigenvectors associated with the largest eigenvalues are used in principal com-
ponent analysis (PCA), whereas those with the smallest eigenvalues are used in
minor component analysis (MCA).
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Time prediction using MCA
We choose the smallest eigenvalues λ1,λ2, · · · ,λd and their associated eigenvectors
V1,V2, · · · ,Vd .

We call B the matrix of eigenvectors associated with the smallest eigenvalues:

B = [V1 V2 · · · Vd ] =


v11 v12 · · · v1d
v21 v22 · · · v2d
...

...
...

vP1 vP2 · · · vPd

 (21)

The projection of signal Y = [y1 y2 · · · yP]
T on the eigenvectors basis (V1,V2, · · · ,Vd)

has a very low variance.
BTY ≈ 0 (22)

Signal Y can be cut in two parts, Ya ∈ Rn1×1 and Yb ∈ R(P−n1)×1, where:

Ya = [y1 y2 · · · yn1]
T and Yb = [yn1+1 yn1+2 · · · yP]

T (23)

Likewise, matrix BT can be cut into BT
a ∈ Rd×n1 and BT

b ∈ Rd×(P−n1), and we
have:

BT
a Ya +BT

b Yb ≈ 0 (24)

For the ARMA prediction, we suppose that the process is stationary over the
prediction horizon. The eigenvectors describing the signal are not changing, and
BT

a = Bpast and BT
b = Bpred are constant.

We can then generate a prediction of the P−n1 next values with:

BpastYpast +BpredYpred ≈ 0 (25)

where Ypred = [yk · · · yk+P−n1−1]
T ∈ R(P−n1)×1 is the predicted signal and

Ypast = [yk−n1 · · · yk−1]
T ∈ Rn1×1 is the past signal.

Finally we obtain:

Ypred ≈−
(
BT

predBpred
)−1

BT
predBpastYpast (26)

Implementation
The first step consists of computing the autocorrelation matrix Ry of the signal yk
using the last P+N− 1 available measurements. Only P values of the correlation
function must be computed to form Ry as the matrix is Toplitz and symmetric. Then,
the eigenvectors associated with the eigenvalues of Ry have to be extracted. As Ry is
positive semidefinite, singular value decomposition can be used to compute λ j and
Vj efficiently. The d smallest eigenvalues and their eigenvectors are then selected.
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Typically, we choose the eigenvalues lower than 1.5% of the total energy of ∆ (di-
agonal matrix composed of the autocorrelation matrix’s eigenvalues):

d = max(i) such as λi ≤
1.5
100
·

P

∑
k=1

λi (27)

The resulting minor eigenvector matrix BT is then split in two parts: Bpast (dimen-
sion d×n1) and Bpred (dimension d× (P−n1)). n1 is typically chosen to be larger
than 2

3 N according to G. Zhao [11]. The P− n1 steps prediction is then generated
using equation 26. Note that inversion of BT

predBpred is not necessary; QR decompo-
sition of Bpred simplifies the computation of Ypred .

The length of Ypred gives us the prediction horizon: P−n1. Given that n1 =
2
3 N,

the prediction horizon becomes P− 2
3 N. The window length N has to be sufficiently

enough to obtain a long horizon; however, the window needs to capture the sys-
tem dynamics. Typically, a window corresponding to 3 periods of the boat main
sinusoidal motion is chosen. The use of a large P increases the prediction horizon;
nevertheless, it is synonymous with a higher computational load (autocorrelation
matrix formation and computation of the equation 26 at each step). Moreover, the
use of very old past values of the signal (until yk−N−P−1) prevents following of the
time-varying characteristics of ship motion.

3.3 Adaptive Notch Filters Predictions

Ship motion can be explained by sea-keeping theory, which supposes that a ship
is oscillating around an equilibrium point. The signals describing these movements
can be seen as the sum of sinusoids with time-varying frequencies fi(k), amplitudes
Ci(k) and phases βi(k).

yk =

n

∑
i=1

Ci(k).Sin(2.π fi(k).Ts.k+βi(k)) (28)

Time prediction of this signal relies on accurate online estimation of the time-
varying noise components. The recently introduced adaptive identification tech-
nique uses frequency estimation of narrow band signals based on an adaptive notch
filter (ANF) [16]. Online amplitude and phase estimation is performed using the
weighted recursive least squares algorithm on a Fourier decomposition.

Frequency estimation with cascaded ANF:
Adaptive notch filters are well known for extracting the frequencies of signals com-
posed of sinusoidal components.
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For example, the following second-order ANF filters the ith sinusoidal component
(frequency fi) of a given signal:

Hi(z−1) =
1+aiz−1 + z−2

1+ r.aiz−1 + r2z−2 (29)

where:

• ai =−2cos(2π fiTs) is the notch filter parameter and Ts is the signal sam-
pling period.
• 0 < r < 1 is the notch bandwidth

Cascaded ANF ∏
p
i=1 Hi(z−1) with i∈ [1; p] and i 6= j, when convergence is achieved,

will remove all sinusoidal components except that of frequency f j. Consequently,
the remaining signal ỹ j

k is written as:

ỹ j
k =

p

∏
i = 1
i 6= j

1+aiz−1 + z−2

1+ r.aiz−1 + r2z−2 .yk (30)

Filtering of the remaining signal ỹ j
k with a final notch filter H j will give us the

prediction error of the estimation of f j:

ε
j

k = H j(z−1)ỹ j
k =

1+a jz−1 + z−2

1+ r.a jz−1 + r2z−2 ỹ j
k (31)

Minimization of the output prediction error ε
j

k will lead to an estimate of the error
gradient:

ψ
j

k−1 =−
dε

j
k

da j
=

(1− r)(1− rz−2)

(1+ r.a jz−1 + r2z−2)2 .ỹ
j
k−1 (32)

Real-time implementation of frequency estimation leads to the use of the follow-
ing recursive maximum likelihood algorithm:

f or j = 1...p do
â j

k = â j
k−1 +F j

k−1.ψ
j

k−1.ε
j

k

F j
k =

F j
k−1

(λ+ψ
j

k−1.F
j

k−1.ψ
j

k−1)

(33)

where:

• â j
k =−2cos(2π. f̂ j(k).Ts)

• F j
k is the adaptation gain

• 0 < λ < 1 is the forgetting factor

Notch filter second-order cells are applied in a cascaded manner. This implemen-
tation is shown in figure 3. In a recursive manner, the current cell input is the output
prediction error of the previous cells.
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The filter bandwidth rk is time varying from r0 to r f according to the following
expression:

rk = rd .rk−1 +(1− rd).r f (34)

0< rk < 1 defines the position of the filter poles along frequency radials in the z plan.
rk ≈ 0 means that poles are close to the origin whereas rk ≈ 1 means that poles are
close to the unit circle (narrow bandwidth). Typically, we chose rd = 0.99, r0 = 0.5
and r f = 0.99. The convergence and performance of the frequency estimation using
ANF are developed in [16].

Fig. 3: Frequency estimation stage of the ANF algorithm

Amplitude and phase estimation:
When the component frequencies fi are known, we can use weighted recursive least
squares (WRLS) to estimate the amplitude and phase of each component. The signal
defined in 28 can be decomposed in a Fourier basis as follows:

yk =

p

∑
i=1

[gi(k).Cos(2π fiTs.k)+hi(k).Sin(2π fiTs.k)]+ vk (35)

where Ci =
√

g2
i +h2

i is the amplitude of frequency component fi and βi is its phase
(tan(βi) = gi/hi).

The parameter vector θ̂k and regression vector Φk are defined as follows:
θ̂k = [g1 g2 ... gp h1 h2 ... hp]

T and Φk = [C,S]T with
C = [Cos(2π f1.Ts.k) · · · Cos(2π fp.Ts.k)]
S = [Sin(2π f1.Ts.k) · · · Sin(2π fp.Ts.k)]

(36)
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The Fourier parameters gi and hi are estimated using WRLS:
ε0

k = yk− θ̂ T
k−1.Φk

Gk =
1

λ0

(
Gk−1−

Gk−1ΦT
k ΦkGk−1

λ0+ΦT
k Gk−1Φk

)
θ̂k = θ̂k−1 +Gk.Φk.ε

0
k

(37)

where ε0
k is the a priori prediction error, Gk is the adaptation gain and λ0 is the

exponential forgetting factor, typically chosen between 0.98 and 0.995.

Time Prediction at instant k+d
The prediction of yk+d uses the last available parameters (gi(k),hi(k), fi(k)) identi-
fied at instant k. For the ARMA and MCA methods, during the prediction period,
we keep the parameters estimated at time k.

yk+d =

p

∑
i=1

[gi(k).Cos[2π fi(k).Ts.(k+d)]+hi(k).Sin[2π fi(k).Ts.(k+d))] (38)

4 Application and Comparative Analysis

4.1 Prediction methods comparison on experimental data

To compare the performance of the three prediction methods, we test the algorithms
on a pitch angle measurement signal. This attitude signal was recorded using an
IMU on a large ship navigating in the North Sea.

We present the results of the pitch angle prediction with horizon varying from
0 to 1 second (figures 4, 5 and 6) and from 0 to 5 seconds (figures 7, 8 and 9).
The predictions are generated on windows of 1 s (respectively, 5 s) successively
distributed on time range [500 s, 600 s]. These windows contain predictions with
horizons ranging from 0 to 1 s (respectively, 5 s) and are sampled at 10 Hz (respec-
tively, 5 Hz). Consequently, the predictions on 1 s windows (respectively, 5 s) range
from 0 to 10 steps ahead (respectively, 25 steps). Each prediction uses all the past
data available until the start of the prediction window. For example, with windows
of 5 s, the prediction signal starts at 500 s, ends at 505 s and uses the pasts data
from 0-500 s. The second prediction signal starts at 505 s, ends at 510 s and uses
the past data from 0-505 s past data, etc.. Note that the overall prediction signal (in
red) is discontinuous at each window extremity because the last point of a window
corresponds to 10-steps-ahead prediction (respectively, 25 steps from the last data
available), whereas the first point of the next window corresponds to 0-steps-ahead
prediction. The predictions are presented this way to observe how the predictor pre-
dicts the next second (or 5 s). We selected the signal time range [500 s, 600 s] be-
cause the amplitude spectrum in this time range is time varying and exhibits some
nonsinusoidal parts that we qualify as ”accidents” (512 s - 516 s and 580 s - 585
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s). These accidents originate from a modification of the local sea state due to wind
gusts or ocean floor topography. In our study, the accidents enable assessment of the
robustness of our prediction methods against time variations and nonstationarity.

4.1.1 Methods settings

ARMA: The orders of the ARMA model (na and nc) are selected according to
the Bayesian information criterion (BIC) based on past data. The models usually
range between 10 and 30 parameters (na,nc). We choose a data window of 500 s in
length and apply forgetting coefficient λ = 0.99. The pitch angle signal is resam-
pled at 10 Hz. Consequently, a 1 s prediction horizon corresponds to 10-steps-ahead
prediction.

MCA: For the MCA, the signal is also resampled at 10 Hz. Past data are cut
using a 50 s window (N = 500). Eigenvalues of the autocorrelation matrix Ry lower
than 2% of the total energy of ∆ are selected. n1 and P are chosen according to the
remarks given in the implementation paragraph of section 3.2.

ANF: According to the pitch angle spectrum versus time, we distinguish 3 main
frequencies. We choose p = 3 for the ANF frequency estimation stage. The parame-
ter estimates â j

0 are set to zero initially. For the ANF bandwidths, r0 is typically 0.5,
and r f is chosen such that the poles of Hi are as close as possible to the unit circle.
The initial value of the adaptation gain is set to a large value, typically G0 = 100.
The forgetting factor λ0 is set to 0.99, and the parameters vector θ̂(0) is initially set
to 0.

4.1.2 Prediction results

In figures 4, 5 and 6, corresponding to a prediction horizon ranging from 0 to 1 s, we
observe that the prediction error is relatively low and the ANF method has the best
performance. However, the substantial signal damping (accidents at 512 s, 562 s and
581 s) is not anticipated by any of the methods. For example, at 581 s, the models
predict that the signal will maintain its sinusoidal form and continue to decrease;
however, the real (nonstationary) signal begins to rise at this moment.

In figures 7, 8 and 9, corresponding to a prediction horizon ranging from 0 to 5 s,
the signal phase is generally respected, expect for signal nonstationarities (accidents
at 512 s and 582 s).
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Fig. 4: Prediction with a horizon from 0 to 1 s using an ARMA model
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Fig. 5: Prediction with a horizon from 0 to 1 s using minor component analysis
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Fig. 6: Prediction with a horizon from 0 to 1 s using adaptive notch filters
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Fig. 7: Prediction with a horizon from 0 to 5 s using an ARMA model
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Fig. 8: Prediction with a horizon from 0 to 5 s using minor component analysis
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Fig. 9: Prediction with a horizon from 0 to 5 s using adaptive notch filters

4.2 Comparative Analysis

According to the prediction method used, a restrictive hypothesis is applied to the
signal. The ANF prediction method requires the signal to have a narrow band spec-
trum (which is our case). MCA is an offline method that assume a stationary signal.
By contrast, ARMA has no spectral restrictions.

The overall complexity of the prediction algorithm must be considered for real-
time on-board implementation. The recursive form of the ARMA and ANF methods
entails a substantial advantage compared to the MCA method, which must compute
the inverse of a (P−n1)× (P−n1) matrix in each prediction generation. The com-
plexity is given as number of operations (flops) per iteration. The complexity of the
ARMA method is O((na+nc)

2), with na and nc between 30 and 40. The complexity
of the MCA method is O(P3), with P ≈ 300. Lowest complexity O(p2) is reached
by ANF method with p varying from 3 to 6.

Prediction error is another important criterion that should be studied. For com-
parison, we use the normalized mean squared error of the 5 s prediction of pitch
angle measurement presented in section 4.1. The MCA method gives the lowest er-
ror of 2.69%.
Tracking of the varying frequencies and amplitudes of the signal is crucial for ship
motion prediction. A study with synthetic signals (not presented here) showed that
the ARMA and ANF methods are capable of adapting their model parameters faster
than is the MCA method. This characteristic is referred as tracking capability.
A summary of the comparative analysis is presented in table 1.
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Hypothesis Complexity Error Tracking
capability Advantages Drawbacks

ARMA None + 9.12% + Software im-
plementation

Order
selection
(na & nb)

MCA Stationary
process - 2.69% - Low error

High
complexity &

Offline

ANF Narrow band ++ 9.53 %

++ Good for
nonstation-

ary
signals

Low
complexity

Choice of
penalties

constraints
(r,λ )

Table 1: Comparative Analysis of Prediction Methods

The MCA prediction method is not well suited for online estimation; further
study would be necessary to develop a recursive form of the algorithm. Although
this method shows the lowest error for stationary signals, the convergence of MCA
algorithm is relatively slow compared to other methods when signal frequencies
are varying (low tracking capability). The ARMA and ANF methods provide sim-
ilar performance in terms of the prediction error and tracking capability, with the
advantage going to ANF in the case of narrow bands. However, the number of pa-
rameters that must be estimated for ANF (p≈ 3) is substantially lower than that for
the ARMA method (between 30 and 40), which leads to faster convergence of the
prediction error for ANF and to low computational requirements. Consequently, the
ANF method is favored for ship motion prediction. We have also used a cascaded
ANF and a two-stage structure to estimate the amplitudes and phase. In future work,
we will investigate a simpler implementation.

5 Conclusion
Several prediction methods have been investigated for comparison. A new predic-
tion method has been presented for the motion of a ship navigating through sea
swell and has been compared to ARMA and MCA methods. The main interest of
the ANF method is to efficiently estimate the time-varying frequencies, amplitude
and phases of sinusoidal signals. The ANF algorithm shows good robustness to
time-varying perturbation of a ship. Real-time implementation of this algorithm on
board is feasible and simple because of its recursive form and low number of pa-
rameters. The ANF and ARMA methods give similar results, but ANF shows better
tracking capability and lower computational load. The prediction error on a horizon
of up to 5 seconds may be satisfactory for use in helicopter guidance during hoist
operation.

Future work will focus on building a complete state observer of the ship via
image analysis from a camera mounted on a helicopter. Indeed, ships that have IMU
equipment broadcasting their motion data are not common. Then, the development
of helicopter control laws for SAR missions will be performed. The prediction of
wind perturbation using ANF will be also considered.
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