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Abstract In this work interval analysis is applied to find the trimpoints of the Inno-
vative Control Effectors aircraft model. At low speed the method is capable of find-
ing interval enclosures of single trim points with a high accuracy. At higher speeds
the found accelerations are larger. When looking for a full trim set the method finds
continuous bounds on the control effectors for the entire input range in one run.
This is a good demonstration of the advantages that interval analysis has over con-
ventional methods that generally can only find one trim point at a time. However,
remaining accelerations can be too large to be acceptable as trim conditions. On the
other hand the potential that interval analysis has as a trimming method is demon-
strated, since continuous bounds on trim sets have been found in a single run.

1 Introduction

The most frequent cause of fatalities in aviation is loss of control in-flight (LOC-
I) [10]. It has been shown that LOC-I ”is generally associated with flight outside
of the normal flight envelope, with nonlinear influences, and with a significantly
diminished capability of the pilot to control the aircraft” [17]. In that research a
bifurcation method is applied to a set of trim points to identify the normal flight
envelope. A different approach to finding the safe flight envelope relies on the inter-
section of the forwards and backwards reachable sets, starting from a safe set [21].
Again a trim set is used as an initial safe set. This shows the importance of knowing
the trim set of an aircraft to determine safe operating limits. The reason that trim
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sets can be used as a safe set is that a trim point is a dynamic equilibrium state of
the aircraft. This means that the aircraft will maintain that state indefinitely, which
can be considered a safe situation.

This research focuses on the innovative control effectors (ICE) model developed
by Lockheed Martin. The main purpose of the ICE model was ”to investigate the
potential for new and innovative methods for stabilization and control for high per-
formance, low all-aspect signature fighters” [4]. The ICE model is an interesting
model to try trim methods on because it has a total of thirteen control effectors. A
consequence of this is that there is redundancy in control power, potentially leading
to trim curves or even surfaces instead of points for given flight conditions.

Aircraft trim can have various meanings depending on the context. In this work
trim is considered to be all the states of the aircraft model where the accelerations
are equal to zero. The trim problem is the task of finding those states, and is gen-
erally solved with optimization methods. Interval analysis is a branch and bound
optimization method that is capable of computing bounds on all possible solutions
in one single run [8], [12]. Although it is a computationally heavy method it has
been shown to have potential as an aircraft trim method [14], as it found both the
normal side and the back side of the power curve in one run. This makes it a very
strong method compared to other methods that have been tried in the past, such as
gradient methods [3], sequential quadratic programming [7], bifurcation and con-
tinuity analysis [22] and [24] and evolutionary algorithms [25]. All these methods
find only one of the possible solutions, based on what the initial conditions were.
An analytical solution to the trim problem was proposed in [6], but in order for this
to work the model had to be linear in the control inputs. This limits its usability. An-
other strong feature of interval analysis is that it is very easy to enforce constraints
on a problem [8], [12]. Applying constraints is almost unavoidable when dealing
with an aircraft model that has thirteen control effectors.

First a short introduction to interval analysis will be given in Section 2. The
ICE model is discussed in Section 3. In Section 4 the approach to solving the trim
problem will be explained. This is followed by the results in Section 5. This paper
ends with conclusions and recommendations in Section 6.

2 Interval Analysis

Interval analysis is a field of mathematics that deals with intervals instead of crisp
numbers. Each number is represented by a lower bound a and an upper bound b to
make the interval [x] = [a,b]. Initially it was developed to put bounds on rounding
errors that originate from the limited precision of numbers on digital computers
[19], but it was soon realized that interval analysis could be used as an optimization
tool as well [18]. If for example 64-bit floating point arithmetic is considered in
accordance with IEEE Standard 754 [11], the smallest number greater than 1 is
1+ z where z = 2.220446049250313 ·10−16. With normal computation the result of
1+ z

3 would be simply 1, but with interval arithmetic it would be [1,1+ z]. Neither
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the lower or the upper bound are the exact solution, but the exact solution is certain
to be contained by the interval solution. Normal math operations can be done on
intervals, but this requires that the rules are extended. If any operator is expressed
as • then [8]:

[x]• [y] = {x• y|x ∈ [x],y ∈ [y]} (1)

For example, refer to Equations 2 and 3 to see what this means for addition and
multiplication.

[a,b]+ [c,d] = [a+ c,b+d] (2)

[a,b] · [c,d] = [min(ac,ad,bc,bd),max(ac,ad,bc,bd)] (3)

When intervals are used as a function argument the function value will also be an
interval. Care must be taken that the function has as few occurrences as the interval
variable as possible. As an example take Equations 4 to 6. In crisp arithmetic these
expressions would be equivalent. If now the interval x = [−1,3] is used instead they
evaluate to 3 different intervals. This problem is known as interval dependence. It
is certain that all possible values that the function assumes on the argument interval
are contained by the resulting interval. If the function is expressed without taking
dependence into account there will be overestimation in the function evaluation.
When every variable is in the function expression only once the interval will be
tight, meaning that the lower bound equals the minimum value of the function on
the domain and the upper bound the maximum value. This is the case in Equation 6.

[x]2− [x] = [−3,10] (4)

[x] ([x]−1) = [−6,6] (5)

(
[x]− 1

2

)2

− 1
4
= [−0.25,6] (6)

In [8] approaches to optimization algorithms based on interval analysis are ex-
plained. Used in such a way interval analysis is a very powerful tool, because it
finds all possible solutions in one single run. This feature is shown to be extremely
useful in for example parameter estimation, robust control and robotics [12] or
for nonlinear aircraft trim, optimization of human perception modeling[15], orbital
dynamics[2] and spacecraft rendezvouz and docking [27]. It has also been used to
evaluate the effect of uncertainties for re-entry flight clearance [13]. Interval analysis
does have downsides, such as the computational load associated with it. By defini-
tion it will not find the exact solutions, but only bounds on the solutions. However,
for practical purposes the mid point of the interval can be considered a crisp solution
if the bounds are tight enough. When considering intervals as inputs to an optimiza-
tion problem they are generally called boxes. In multidimensional problems a box
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consists of a vector of intervals. All calculations in this work are done with Matlab
in combination with the Intlab toolbox [23]. The implementation of the optimization
algorithm will be discussed later in Section 4.

3 Model

The ICE model was developed by Lockheed Martin as an effort to reduce the signa-
ture of fighter aircraft, while still being highly agile. To this extend the vertical tail
has been removed and instead three promising alternative concepts for yaw control
have been applied to the model [4], [5]. The three concepts are all moving wing tips
(AMT), spoiler-slot deflectors (SSD), and differential leading edge flaps (DLEF).
Combined with elevons, a pitch flap (PF), pitch thrust vectoring (PTV) and yaw
thrust vectoring (YTV) this aircraft has a total of thirteen control effectors. There
are two versions of it, a delta wing shaped model for the air force (configuration
101) and a diamond wing with canard layout for carrier based use for the navy (con-
figuration 201). An impression of the 101 model is given in Figure 1. Wind tunnel
tests on the 101 model have shown nonlinear characteristics of the aerodynamics
and in some cases even discontinuities [1].

Fig. 1 Impression of what the 101-series ICE model looks like [4]

The model of the 101 configuration of ICE is written as a Simulink model. Un-
fortunately the interval toolbox Intlab is not compatible with Simulink, and because
of that the model must be converted to a Matlab code equivalent. This has been
taken as an opportunity to write the model specifically with trim in mind. All states
in the original model that are used as feedback states are now linked directly to the
input. Based on that expanded input set the aerodynamic coefficients for forces and
moments can be calculated. These are then used to determine the aerodynamic body
forces and moments. Because the converted model only will be used for trim the
thrust setting can be coupled to the body forces. It simply needs to be equal to the
body force in x-direction. The aerodynamic model is not symmetrical. This causes
problems if straight and level flight conditions are assumed for trim. In those cases
the pitch angle equals the angle of attack and the roll angle should be zero degrees.
When zero degree roll angles are used the asymmetry will result in acceleration in-
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tervals of the model not containing zeros. As a consequence of that no trim solutions
will be found. To counter this the aerodynamic side force can be used as a measure
for how large a roll induced gravitational side force must be. In this way roll angles
can be found that do result in a trimmed state. Because the mass and the inertia of
the model are constant the accelerations can easily be calculated from the forces
and moments. All flight states required to do the calculations are used as an input or
depend on the inputs directly. This removes the need to do integration in the model.
This is a good thing because integration generally produces very wide intervals [20],
[16].

The conversion has changed the list of inputs to the model. In the original model
only the control deflections and the thrust setting could be controlled directly, while
some flight parameters such as initial altitude and velocity could be set before a sim-
ulation. The states of the model were all calculated internally, based on integration
from the initial values. The outputs were the states, with the speeds expressed in
earth velocities, body velocities, and α , β , Mach representation. Instead of Mach
number the airspeed can be used, as that is calculated too. Finally the dynamic pres-
sure is given as an output as well.

In the converted model the thrust setting is internalized and can thus be removed
from the list of inputs. On the other hand a lot more control on the flight state is
desired, so that trim for specific scenarios can be found. Because of that the angle of
attack, angle of sideslip and the Mach number are usable as inputs now. Table 1 gives
an overview of the inputs and their allowable ranges, as well as the sign conventions
used in this work. The choice of flight condition determines how the Euler angles
need to be linked to the inputs. This means they can be internalized as well. The
flight condition also dictates the values for the body rates. Since trim is the goal,
it is known that the accelerations must be zero, so constant values can be used for
the rates. The same holds for the altitude. The position on earth is arbitrary in this
model. This means that only the accelerations are missing. These are the outputs. In
order to reconstruct the power curve thrust is required as an output as well.

Table 1 Allowable ranges and sign conventions for the inputs to the converted model

Input Lower limit Upper limit Sign convention positive

α −2.5◦ 42.5◦ Nose up
β −30◦ 30◦ Nose right
Mach number 0.3 2.16 Positive body x-axis
AMT 0◦ 60◦ Trailing edge down
DLEF inboard 0◦ 40◦ Leading edge down
DLEF outboard −40◦ 40◦ Leading edge down
Elevons −30◦ 30◦ Trailing edge down
PF −30◦ 30◦ Trailing edge down
SSD 0◦ 60◦ Trailing edge up
PTV −15◦ 15◦ Nozzle down
YTV −15◦ 15◦ Nozzle left
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The aerodynamic model of ICE is stored in 108 data tables. Of those 108, 96 use
linear interpolation and twelve use cubic interpolation. Linear interpolation with in-
tervals can be done by evaluating a finite number of points and taking the maximum
and minimum value at those points as upper and lower bounds [14]. These points
are every data point contained by the box, all points on the boundary of the box
intersecting a line between data points and all corners of the box. Figure 2 shows
this.

Fig. 2 All points that need to be considered during linear interpolation in an interval box [14]

The process for cubic interpolation is a bit more elaborate. The explanation of
how and why it works is as follows. The second derivative of a cubic spline between
two data point is at most a linear function. Therefore there can be at most one zero
crossing for the second derivative, hence there can be at most one inflection point
between two data points. If the tangent is taken at the data points and extended to
the other side of the section an inclusion interval can be determined. When there are
no crossings of the tangent and the curve the endpoints of the tangent are measures
for the inclusion interval of the curve. If the curve intersects the tangent line before
it reaches the other side of the section this means that there has to be an inflection
point between the data point at which the tangent was taken and the intersection
of the tangent and the curve. This means that the curve can only continue in the
direction that it has crossed the tangent. If the tangent is taken from the left data
point it runs from point the data point A to the mapped point B. The tangent from the
right data point C runs to the mapped point D. It is certain that the curve is included
in the interval [min(A,B,C,D),max(A,B,C,D)]. The left plot in Figure 3 shows this
procedure. When this is done over all the sections defined by data points and domain
boundaries an inclusion interval for the entire domain can be found by taking the
maximum and minimum found values, as is illustrated in the right plot of Figure 3.
The curves used to make the figures are based on a cubic spline created on a set of
ten random numbers in the range [0,1] randomly distributed on the domain [0,5].
Because it uses the gradient to find the inclusion interval this interpolation method
is called the cubic gradient inclusion interval. The current implementation used in
the model determines the gradient numerically by taking the symmetric derivative
around the data points.
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Fig. 3 Illustration of the workings of the cubic gradient inclusion interval

After the conversion the two versions of the model are compared. This is to val-
idate the new model. To do this a set of 10,000 randomly generated input combi-
nations was used. All inputs were within the ranges indicated in Table 1. Based
on each combination of inputs both models are run in a block by block fashion, to
identify mismatches. During this process the largest differences were six orders of
magnitude smaller than the actual values, while most of them were in the order of
64-bit double machine precision. The larger differences generally occurred at large
aerodynamic angles, when the control surface deflections are large and disordered.

4 Methodology

The process of finding a trim set starts with defining the flight condition and what
control effectors can be used to steer the aircraft. Control effectors that are not al-
lowed to move get assigned a fixed value, as do the flight states that do not change.
The rest of the variables are independent variables. These get assigned an interval
in which they are allowed to change. The altitude and the rates are in the current
version not available for use as independent variables. This leaves α , β , and M as
potential independent variables. Every control effector can be used as an indepen-
dent variable as well. The sixteen element vector consisting of α , β , M and the
control effector deflections is defined as a box. The input values set the search do-
main and make up the first box. The trim routine itself is a zero finding algorithm
that is applied to the ICE model. An interval zero finding algorithm works as fol-
lows. To start the first box is evaluated. If there are zeros in this box there could
be actual zeros in the function that is being optimized. If this is the case the initial
box is split into subboxes. The function is evaluated again over these subboxes. If
there are no zeros in a subbox it is certain that there are no zeros in the function
for that part of the domain so the code can discard that box. The boxes that do have
zeros can be split again, and the above process is repeated. This process is based
on box consistency as explained in [8] and [26]. In box consistency the domain is
split up in smaller pieces, for which it is ensured that the function values are consis-
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tent with the solution of the optimization problem. To visualize this process refer to
Figure 4. Here a one dimensional function is evaluated over 20 subboxes. Of those
boxes there are only six that might contain zeros. For the other fourteen it is certain
that they do not contain zeros, and are therefore removed for further evaluation. The
six remaining boxes are each split into five smaller boxes and after evaluation eight
boxes remain. If this process is repeated several times the bounds on the location of
the zeros can become very tight. For the trim algorithm each split will happen in a
different box direction, until all box directions have been split once. Then the code
splits the remaining boxes again in the first direction and loops through all direc-
tions until all are split once more. This goes on until the stopping criteria are met
or until there are no boxes remaining. The stopping criteria are based on practical
limitations and limitations of the human vestibular system. The practical limitations
come from state measuring accuracy and control deflection precision. There is no
point in knowing how much the accelerations vary over a box that spans 0.00001◦

in angle of attack, because the angle of attack sensor at the actual aircraft is not
able to measure that accurate. If boxes are split so often that they become smaller
than 0.01◦ in angle of attack or angle of sideslip and smaller than 0.005 in Mach
number the splitting is terminated in that direction. As will be explained below, it is
possible to do trim runs focused on finding point enclosures and runs aiming to find
the entire trim set on a domain. It can be expected that point enclosures do not re-
quire as much boxes as trim set enclosures. Therefore runs aimed at trim points get
a sharper control deflector box diameter stopping criterion of 0.01◦. Box splitting in
trim set runs terminate if the control deflector box diameter is smaller than 0.1◦. The
limiting factor from the human vestibular system is the limit to what it can actually
detect. From [9] it is found that the smallest accelerations that can be detected are
0.02m/s2 for linear accelerations and 0.05◦/s2 for rotational accelerations. These
values indicate when the human sensory system can no longer detect accelerations
in a controlled simulator environment. If either of the stopping criteria are met the
code terminates. If the box precision is reached the found results should first be eval-
uated before going further, due to the computationally demanding nature of interval
analysis. If the number of boxes starts to get excessive there it can become a very
slow process that hardly gives any improvements. If on the other hand the sensory
limits are met before the box precision is achieved this means that the entire box can
be used as trim input. No further refinement is necessary in that case. An overview
of the process is given in Figure 5.

With thirteen control effectors the dimensionality of the ICE model is much too
large to solve in a single run with the current state of technology. The flight condi-
tion and limiting the number of active control effectors can help in the matter. Some
of the more useful flight conditions are explained in [3]. From this it is known that
choosing for steady straight and horizontal flight pins down quite some variables.
The altitude is simply a constraint, while the rates are fixed at zero. It is also known
that the pitch angle θ must be equal to the angle of attack α . As explained earlier
there is an asymmetry in the ICE model that requires a nonzero roll angle φ in order
to achieve a trimmed condition. Because of this it is not sufficient to simply use the
elevons for pitch control and trim the aircraft like that. From [4] and [5] it is known
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Fig. 4 Visualization of an interval analysis zero finding algorithm on an example function

that the AMTs perform reasonably constant up until an angle of attack of 40◦. At
even higher angles the control power reduces, but it is still sufficient to keep full
body control. AMTs can provide yaw control as well as roll control. Yaw control
is linear with control deflection for a large range of angles of attack. Roll control
is not linear and its effect can even change from adverse at low angles of attack to
favorable at high angles of attack. If this is combined with elevons the model has
full roll, pitch, and yaw control. To keep the trim problem small a simple test is
performed to see if trim can be achieved by using only one AMT. It turns out that
only using the left AMT is sufficient. The initial interval for each control effector
will be the full allowable range, to ensure that all possible trim points will be found.
The above has explained the choices for determining what control effectors to use.
Furthermore the asymmetry in the model is resolved by just using roll. For steady
straight and horizontal flight the sideslip angle can be set to zero. If both Mach
number and angle of attack are used as free variables every combination of Mach
number and α that gives a trimmed state will be found. This approach will also pro-
duce bounds on the free control effectors. Before attempting such a run it must be
ensured that the algorithm is working properly. To do this Mach number is used as a
constraint. By checking the solutions at multiple Mach numbers trends can be deter-
mined. For example, the shape of the power curve should comply with the shapes of
the power curves of other aircraft. This approach also enables comparison between
the interval trim method and the conventional trim method that was provided with
the ICE model. That method uses the Matlab function fmincon with the active-set
algorithm. Comparing the results found with both methods gives an indication if the
interval method converges to the right solutions. After confirming that the interval
methods find the right solutions a run that finds every trim combination of Mach
number and angle of attack can be executed. For both variables their full allowable
range is used as the input to the solver.
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Fig. 5 Flowchart showing the process used for trimming the ICE model

5 Results

As explained above, it is important to ensure that the code actually finds the right
solutions. To do that the first set of results is aimed at point solutions. Fifteen sample
speeds are used to find these points. These are taken with equal spacing from the
allowable Mach range, spanning the entire range from 0.3 to 2.16. Two different
altitudes are used as well, one set at 10,000 ft and one at 20,000 ft. In total that
means 30 runs are required to get this initial set of results. The code produces bounds
on the true solutions, so the outcome is the list of boxes of input combinations that
would result in interval accelerations that do contain zeros. To keep the plots of
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these results clear the mean value of the midpoints of the list of remaining boxes is
taken. The hull of these lists is at most 0.02◦ wide in angle of attack, 0.12◦ wide in
the control deflections and a maximum of 120 lbf wide in terms of thrust setting.
Relative to the absolute values the hulls are very small, so the difference between
a crisp point or the hull of the boxes would not be visible. The plots can be found
in Figure 6. Individual plots are made for all the free variables of the zero finding
problem, as well as the associated thrusts.

The plot of the trimmed thrust against the Mach number is widely known as the
power curve. This can be used as a indication if the code converges to the right
solutions, since every aircraft has one and the trends in power curves are generally
the same. For each aircraft there is a velocity that requires a minimum amount of
thrust. This is because the combination of induced and parasitic drag is the lowest
at that point. Fly faster and the parasitic drag will increase, requiring more thrust.
Flying slower than that point increases the induced drag, again increasing the re-
quired thrust. This region where more thrust is needed to fly slower is known as the
backside of the power curve. The trends between the points in the first plot in Fig-
ure 6 show this behavior as well. The impact of different altitudes is clear as well.
Because the atmosphere at lower altitude is denser the power curve is steeper. The
point of lowest thrust also occurs at a lower speed. This matches the trends seen in
the plot. What also can be seen in the plot is that there are two points missing in
the curve for 10,000 ft. A hint of what happens there can be seen in the plot for the
angle of attack. The solution at Mach 1.3628 appears to be out of line with the rest
of the solutions in that it finds a lower angle of attack compared to the ones at the
higher Mach numbers. When allowing the code to exceed the allowable range in
angle of attack as indicated in Table 1 to highly negative angles it does find a solu-
tions. These solution require angles of attack of approximately −15◦. When using
the trim procedure that came with the model similar results are found. This indicates
that there is nothing wrong with the method, but rather that there is some odd be-
havior in the model in that particular flight regime. The trend for the angle of attack
curve at 20,000 ft shows, as expected, high angles at low airspeed with the curve
flattening off to an almost constant angle at higher speeds.

When looking the required deflections at the trimmed points there are three parts
to each curve: the part on the backside of the power curve, the part on the normal
side of the power curve up to Mach 1.5, and the part that covers the higher sonic
regime. In the first domain it is very notable that the required LAMT deflection
is larger than it needs to be for the other parts of the speed domains. The elevon
deflections at 20,000 ft show the expected reversal of command effect at the slowest
speeds, which cannot be seen at 10,000 ft. The section that covers the part up to
Mach 1.5 has only small LAMT deflections, with maximum deflections of 1.5◦,
while the higher sonic part of the domain sees even smaller LAMT deflections up to
0.5◦. This indicates that the faster the aircraft flies, the more the LAMT acts as a trim
tab. This is as expected, because in this scenario the LAMT is used just to balance
the asymmetry of the model. It is also observed that the difference between the left
and right elevon is smaller if the LAMT deflection is smaller. It can be assumed
that if the model was symmetric, trim would be possible with just the elevons. Both
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elevons could use the same value in that case, leading to a very small optimization
problem with only angle of attack and elevon deflection as free variables.
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Fig. 6 Overview of the found trim points when using fixed Mach numbers

To compare the interval method with the more conventional trim method that
came with the ICE model a similar set of runs is done with the standard trimming
routine. At two different altitudes fifteen different velocities have been used to find
a trim point. The found points are shown in Figure 7. For reference the points found
with the interval method are given as well. As mentioned earlier the fmincon rou-
tine also finds odd results for Mach numbers 1.0971 and 1.2300 at 10,000 ft. Again,
these points are not plotted, since this issue is rooted in the model itself. When com-
paring the two sets of solutions one must keep in mind that the interval method only
works on the converted model which uses intervals. This in turn means that the con-
verted model cannot be used with the conventional trim method. A pure comparison
between the methods is therefore not possible. But as mentioned in Section 3 the dif-
ferences between the two versions of the model have been shown to be very small.
This is notable at subsonic speeds, where the two methods find almost identical so-
lutions. Going to higher speeds there are only minor differences in terms of thrust at
20,000 ft in the area where 10,000 ft runs do not find any solutions at all and at the
highest Mach number that has been evaluated. In angle of attack there are no signifi-
cant differences. In the control deflections there are bigger differences that can be as
large as 3◦. The only logical explanation is that these differences are caused by the



Title Suppressed Due to Excessive Length 13

combination of each model with each respective model. The differences between the
models have been shown to be very small, so only part of the mismatch is caused
by the cumulative mismatches of the individual parts of the models. The rest should
therefore originate from the different features of each method. The interval method
simply tries to bound zeros in the model accelerations, irrespective of the control
surface deflections, while the fmincon code minimizes the sum of the squares of
all control surface deflections. That the accelerations should be zero is only used as
a constraint. This makes in logical that the absolute deflections with the fmincon
method are smaller than the ones found with interval analysis. It must be noted that
the fmincon code was not able to find a solution for Mach 1.4957 at 10,000 ft and
for Mach 1.6286 at both altitudes with the used starting values of all control deflec-
tions equal to zero with an angle of attack of 5◦. However, by changing both initial
elevon deflections to −20◦ a solution is found for the 20,000 ft case. This point is
indicated with a different marker in Figure 7. That the initial values can cause the
method to not find a solution is a clear downside of the method. Interval analysis
does not have this issue, as the only required input is the search domain.
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Fig. 7 Differences in the found results when using interval analysis and fmincon

The point solutions in Figure 6 have indicated that the trim routine is working
as intended. It can now be expanded to also use Mach number as an independent
variable. Two runs are done, one to cover each altitude that was used to get the
previous results. The outcome of such a run is a set of continuous bounds on the free



14 Stephen C. Hungs and Erik-Jan van Kampen

variables. These are shown in Figure 8. In terms of thrust the bounds are less than
500 lbf apart for the most of the domain, only at high Mach numbers where high
thrust settings are needed the difference goes up to a maximum of approximately
900 lbf. The upper and lower bounds on angle of attack are rarely more than 0.2◦

apart, while the control deflectors bounds are on average 0.37◦ wide, exceeding
1.0◦ only once. The points found previously are all contained by the bounds found
in these runs. As with the point solutions, there is a domain where the model shows
some odd behavior and requires highly negative angles of attack for trim. This can
best be seen in the α-Mach curve, where the bounds on the angle of attack suddenly
drop to the lower limit of the validated range, only to gradually recover at higher
velocities. In these sections the bounds on thrust and angle of attack are further
apart than the limits stated before. In the plots there are several kinks, such as the
one at Mach 1.2 in the thrust plot and the ones at Mach 0.9 and Mach 0.95 in
the elevon plots. These kinks happen at data points in the tables. Because most
data tables interpolate linearly there are discontinuities in the derivatives of the data
values. This carries through to the found solutions. Except for the gap in the 10,000
ft run the power curves look as they are supposed to look. The effect of altitude
can again clearly be seen with the 20,000 ft power curve less steep and moved to
the right. The higher density of the atmosphere at the lower altitude means that less
angle of attack is needed to generate enough lift, which can also be clearly seen. The
continuous bounds on the control effectors show that there is a lot more variation
going on in the required deflections on the backside of the power curve than the
point solutions initially suggested. The two slowest solutions on the LAMT plot
in Figure 6 might have suggested that more LAMT deflection is needed at lower
altitudes, but as it turns out the required deflections have a similar profile, with the
one for greater altitude shifted to the right the same amount as the power curve is
shifted. The fact that the point solutions of the 10,000 ft run were close to local
maximums and the points for the 20,000 ft run close to local minimums gave an
unclear picture of the true deflection profiles. Both elevon profiles show similar
right shifting with increasing altitude. As with the point solutions, the difference
between the left and right elevon deflection is smaller when the LAMT deflection
is smaller. This enforces the hypothesis that the model could be trimmed with only
elevons if it was symmetric.

In addition to the five plots that are also there in the point solution figure, there
are two plots showing information about the branch and bound algorithm as it pro-
gressed to the solution. The one on the left gives the number of boxes that could
potentially contain trim points after each step. The computer that was used during
these calculations could evaluate an average of 160 boxes per minute. Because the
splitting algorithm divides the remaining boxes into three subboxes the cumulative
number of boxes for all iterations but the last must be multiplied by three to get the
number of boxes that have been evaluated. What this translates to is that the 10,000
ft run took about 6 days and 10 hour to converge. The run at 20,000 ft used more
boxes, which lead to a total calculation time of approximately 7 days and 8 hours.
The runs enclosing trim points required significantly fewer boxes and because of
that a lot less time too. For all 15 runs at 10,000 ft only 3 hours and 22 minutes were
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Fig. 8 Full interval analysis solution at 10000 ft and at 20000 ft

needed. In this case the 20,000 ft runs used more boxes too, leading to a calculation
time of 3 hours and 37 minutes. Because the high number of boxes and the associ-
ated computation time was anticipated, the control deflection box diameter stopping
criterion was stretched from 0.01◦ to 0.1◦ for the runs finding continuous bounds on
the free variables. What effect this has on the results will be explained below. The
right plot shows the relative volume that is remaining after each branch and bound
step. This number should be very small, as that indicates that a lot of the initial
search domain is removed from evaluation. With both runs ending up at a final ratio
of less than 10−10 a lot of the initial search domain is lost. For the point solutions
the remaining relative box volume was always less than 10−13. Continuing splitting
to the tighter 0.01◦ box width criterion certainly helped getting to this lower value,
but the fact that the point solutions are a four dimensional problem compared with
a five dimensional problem for the continuous solutions cannot be overlooked when
comparing these values. The lower value of the point solutions suggest that these



16 Stephen C. Hungs and Erik-Jan van Kampen

results are more accurate than the continuous set. The elaboration below confirms
this.

The target of trimming methods is to find the states where the accelerations are
zero. The human vestibular system was found to be able to detect accelerations of
0.02m/s2 for translational motions and 0.05◦/s2 for rotational motions [9]. As these
values are the limits of what humans can possibly detect they were not used as hard
criteria. They can now be used as an indication for the quality of the results. For each
solution the remaining accelerations are known. The hull of these accelerations is
taken and its bounds are plotted in Figures 9 to 12. The most striking thing of these
plots is that irrespective of the run the accelerations are much wider at high speeds
compared to low speeds. The force that a control effector can exert on the aircraft
body is a function of velocity. All the boxes are equally wide throughout the range
of Mach numbers. That means that at low speeds a certain interval is multiplied with
a small number, while at high speeds that same interval is multiplied with a much
larger number. This results in wider intervals in terms of forces, and this caries
through to the final accelerations. With this in mind it is not surprising that the only
two trim points that meet the 0.02m/s2 and 0.05◦/s2 criteria are at 20,000 ft at the
lowest two Mach numbers, 0.3000 and 0.4328. Because the available control forces
also are a function of atmospheric density the widths of the accelerations are larger
at lower altitudes. This lead to the best trim point at 10,000 ft being at Mach 0.3000.
This solution only has two boxes out of 37 boxes violating the sensible acceleration
limits. Comparing the point solutions to the set solution it becomes clear what effect
the relaxed precision criteria has had: a factor ten less accurate in box accuracy
leads to accelerations that are approximately a factor ten larger. The translational
accelerations in x- and y-direction are acceptable, but the ones in z-direction are too
large. In the full set solution rotational accelerations can be as large as 10◦/s2. With
this acceleration it only takes 8.49 seconds to do a full rotation. This is clearly not
acceptable for a trim set. Further refinement is required, especially at high speeds.
Keep in mind that every box does at least contain zero in the acceleration, otherwise
it would have been removed from the list of boxes. So despite that the bounds on the
control deflections less than 1◦ apart the bounds on the accelerations are too wide to
accept these results as trim sets. The fmincon algorithm used in the trim routine
that was supplied with the ICE model can have severe rotational accelerations at
trim solutions. In one case these are as large as 34◦/s2.

6 Conclusion

Looking at the results it can be seen that interval analysis is a method that has great
potential as a trimming method. With the current implementation it was possible to
get bounds of a continuous trim profile for the highly overactuated ICE model that
are only 1◦ wide. Within these 1◦ bounds the accelerations are still up to maxima
0.5m/s2 in translational motions and 10◦/s2 in rotational motions. This is something
that needs improvements before the trim sets can be accepted. The first potential for
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improved results is to make the model also calculate directional derivatives. These
could then be used to implement the very efficient Newton interval algorithm. If
there are no zeros in the derivative of a function the interval Newton algorithm has a
huge box size reduction potential. The directional derivatives could also be used to
choose the splitting direction for the box splitting procedure. If the gradient is large
in one direction it can be expected that it will result in more boxes that do not contain
zeros, which keeps the boxcount low. The next improvement is aimed at the current
implementations efficiency. In its current form the model can only evaluate one box
at a time. With an average throughput of 160 boxes per minute this becomes imprac-
tical if high precision is desired. Because the code is written in Matlab, it should be
possible to exploit its power to work with vectorized lists of boxes, which allows for
all boxes to be calculated at once, which can allow for huge gains in computation
times. The challenge that is not overcome for this work is rooted in the interval inter-
polation functions. Finally a multivariate B-spline model has been developed at the
institution where this work was performed. If the interval routine was altered so that
it could work with that model the whole interpolation of data tables would be made
redundant, because spline models are fully analytical. Another advantage is that the
directional derivatives can be directly calculated from the spline model as well. This
indicates that there is a lot to gain from applying interval analysis to spline models.
There is also a big downside to spline models. Spline functions are summations of
basis functions and each basis function has one entry for the barycentric coordi-
nates of the free variables. This means that interval arguments occur many times in
a spline function. This can give rise to a big dependency problem. With the above
improvements it might be possible to calculate trim sets with more free control ef-
fectors. The increase in calculation time after going from a four variable problem
to a five variable problem was immense, and with the current implementation this
is expected to happen again if a six variable problem is attempted. Furthermore the
required number of boxes is expected to cause problems with memory limitations
of current computers. Compared to the more conventional trim algorithm based that
uses the Matlab function fmincon the found results are slightly different. Because
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the conventional method tries to minimize the squared sum of all control effectors
it tends to find solutions that have smaller control deflections. The interval analysis
trim procedure focuses purely at the accelerations of the model and tries to bound
the zeros. This gives smaller leftover accelerations when very small box diameters
are reached. It does require more time than the fmincon algorithm. The biggest
drawback of the fmincon method is that the initial guess can influence whether or
not a solution is found. Interval analysis does not have this issue. Instead the only
input needed for it to start is the search domain. And despite the fact that it cannot
find exact solutions like fmincon can it does have the ability to bound continu-
ous trim sets over large domains. If the efficiency of the current approach can be
increased the advantages of interval analysis can make it a trimming method that
is very suitable for highly overactuated aircraft such as ICE with clear advantages
over conventional trimming methods.
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