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Abstract In this paper, we present a novel quaternion-based event triggered control
strategy for trajectory tracking with a quadrotor that is suitable for implementa-
tion on digital platforms with hardware constraints. The proposed control ensures
asymptotic convergence to a desired position trajectory and finite time convergence
to a desired attitude trajectory. We also present Lyapunov based analysis to demon-
strate validity of the triggering scheme and also rule out Zeno behaviour. The per-
formance of the event triggered control laws are demonstrated through numerical
simulations.

1 Introduction

With advances in autonomous quadrotor technology and increased use in various in-
dustries from entertainment to defence, it seems prudent to develop feedback control
schemes felicitous to implementation on digital platforms such as microcontrollers
or computers.

Traditional continuous control schemes for quadrotors have been extensively ex-
plored in [1], [2], [3], [4], [5] among other articles by utilizing various linear and
nonlinear control methods. [1] explores Proportional Integral Derivative controllers
for quadrotors, [2] delves into feedback linearization and sliding mode based control
design, [3] discusses robust approaches, [4] proposes neural networks as the control
paradigm while [5] employs adaptive nonlinear control for fault tolerant operation.
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All of the above eclectic mix of methods aim to achieve asymptotic convergence
of position states which is difficult to prove theoretically owing to the asymptotic
nature of both the inner attitude and outer position controller. This has lead to re-
search in finite-time convergence schemes as in [6], [7], [8] and [9]. In [6] and [7],
geometric methods are used to obtain finite-time stable control inputs for position
tracking in some aerial vehicles. In [8] and [9], finite time attitude stabilisation of
spacecraft is explored.

Although the above finite-time schemes guarantee position tracking in theory,
they demand continuous in time control inputs, which are in reality implemented
only periodically on digital platforms. This approach is exceedingly hardware de-
pendent and at times, the hardware may not be able to accommodate a small enough
sampling period for the practically implemented discrete control inputs to behave
like their theoretical continuous counterparts. This prompts development of event-
triggered control schemes (where control is updated at discrete points in time when
a state-dependent trigger condition is satisfied as detailed in [14]); such as those
explored in [10] and [11]. In [10] and [11], an event-triggered nonlinear scheme is
presented for attitude stabilisation of a quadrotor using an event-triggered version
of the Sontag’s universal controller. This results in a rather complex controller for
the quadrotor attitude and also doesn’t have finite-time convergence properties.

In this article, we address, firstly, both position and attitude controllers for the
quadrotor. While the outer-loop position controller is asymptotic, the inner-loop at-
titude controller is finite-time, thus guaranteeing position tracking in theory though
the control design is modular. Event-triggered versions of both laws are developed
to enhance practical implementability on digital platforms.

2 System Model

In this section, we introduce the translational and unit quaternion-based rotational
dynamics of a quadrotor system.

Fig. 1 Quadrotor - Reference
Frames: body (B) frame and
inertial (I) frame
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2.1 Translational Dynamics

We denote the position vector by µ = (x,y,z)T ∈ R3 with dynamics,

µ̈ =
[
0 0 −9.8

]T
+Re3

u1

m
, µ(0) = µ0 (1)

where e3 = (0,0,1)T , m∈R+ is the mass of the quadrotor and R∈ SO(3) is the 3x3
rotation matrix from the quadrotor body frame to the inertial frame. The feedback
u1(·) ∈ R is the sum of thrust forces from the individual motors.

2.2 Rotational Dynamics

Consider unit quaternion (q0,qv)
T ∈R4 representing the orientation of the quadrotor

in body frame with respect to the inertial frame. Their dynamics are given as:

q̇0 = −1
2

qT
v ω, q0(0) = q̄0

q̇v =
1
2
(q0ω +qv×ω), (q2

0 +qT
V qv = 1), qv(0) = q̄v (2)

Further, from the Euler’s equations of motion, we have

Jω̇ = Jω×ω + τ, ω(0) = ω̄ (3)

where J ∈ R3×3 is the symmetric, positive-definite moment of inertia matrix of the
quadrotor, ω ∈R3 is the angular velocity of the qaudrotor in the body (B) frame and
τ = (τxB ,τyB ,τzB)

T ∈ R3 is the torque provided in the body frame through differen-
tial thrust forces of individual motors.
The control for the translation dynamics u1 and rotation dynamics τ =(τxB ,τyB ,τzB)

T

can be expressed in terms of the angular velocities of the individual motors ωm1,
ωm2, ωm3, ωm4 as follows,

u1
τxB

τyB

τzB

=


f1 + f2 + f3 + f4

d( f2− f4)
d( f3− f1)

cQ
cT
(− f1 + f2− f3 + f4)

=


cT cT cT cT
0 dcT 0 −dcT
−dcT 0 dcT 0
−cQ cQ −cQ cQ




ω2
m1

ω2
m2

ω2
m3

ω2
m4

 (4)

with all motors being assumed identical and producing thrust fi. Further, cT > 0 is
the coefficient of thrust of each motor, cQ > 0 is the coefficient of torque of each
motor and d > 0 is the distance between the centre of mass of the quadrotor and the
centre of a motor (half-arm distance). Equation (4) has been derived in [1] and [5].
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2.3 Preliminaries and control objective

Given a reference position trajectory µr ∈ R3 with initial value µ̄r, we define trans-
lation errors e1,e2 ∈ R3 as,

e1 := µ−µr

e2 := µ̇− µ̇r + k1e1, k1 > 0 (5)

We also define an error quaternion s ∈ R4 (given reference quaternion qr ∈ R4 with
initial value q̄r) as follows:

s :=
[
s0 sv

]T
= q−1

r ∗q (6)

where ∗ represents quaternion multiplication.The reader is refeerd to [16, section
3.5] for further details on quaternion representation of rotation. Computation of the
corresponding error rotation matrix R(s)∈ SO(3) and error in angular velocity δω ∈
R3 (given reference angular velocity ωr ∈R3 with initial value ω̄r) are shown below.

R(s) = R(q−1
r )R(q) = R(qr)

T R(q) (7)
δω = ω−R(s)ωr (8)

The following result is crucial for subsequent Lyapunov analysis of the finite-time
attitude control strategy.

Lemma 1. Consider non-negative numbers α and β and an integer p1 > 1, then we
have (due to concavity of function f (z) = z1/p1 )

α
1/p1 +β

1/p1 ≥ (α +β )1/p1 (9)

For the above setup we are now ready to state our control objective.
Control Objective: To design an event triggered feedback strategy (u,τ) to ensure
that the origin (e1,e2) = (0̄3×1, 0̄3×1) defined in (5) for dynamics (1) is asymptoti-
cally stable.

3 Continuous Feedback Control

3.1 Position Control

The translational error dynamics can be written as follows:

ė1 = e2− k1e1

ė2 =
[
0 0 −9.8

]T
+Re3

u1

m
+ k1ė1

(10)
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Theorem 1. Consider the translational dynamics given in (10) and define σ ∈ R3

as
σ =

[
0 0 9.8

]T − k1ė1− e1− k2e2, k1 > 0,k2 > 0 (11)

where e1 and e2 are as defined in (5). Then, the feedback control u1 ∈ R3 solving,

R.e3
u1

m
= σ (12)

with m being the mass of the quadrotor and R being the rotation matrix corre-
sponding to the quadrotor’s body frame, will exponentially stabilize the origin of
the translational error dynamics given in (10).

Proof. Consider the Lyapunov function and its derivative as below,

V =
1
2

e2
1 +

1
2

e2
2

V̇ = eT
1 ė1 + eT

2 ė2

= eT
1 (e2− k1e1)+ eT

2 (
[
0 0 −9.8

]T
+R.e3

u1

m
+ k1ė1)

(13)

Upon substituting for R.e3
u1
m from (12) in (13), we obtain

V̇ =−k1‖e1‖2− k2‖e2‖2 < 0 (14)

The negative definiteness of V and the fact that V̇ ≤ −γV for some γ > 0, implies
global exponential stability of the origin of (10). ut

The control law proposed in Theorem 1 satisfies upon multiplication with its trans-
pose,

eT
3 RT Re3(u1/m)2 = ‖σ‖2 =⇒ (u1/m)2 = ‖σ‖2 =⇒ u1 = m‖σ‖ (15)

Remark. Based on the control law (12) in Theorem 1, the desired rotation matrix
(R) corresponding to the reference quaternion qr (R := R(qr)) can be obtained after
substituting (15) in (12) as follows

R(qr)e3‖σ‖= σ =⇒ R(qr)e3 = σ/‖σ‖= σ̂ (a unit vector) (16)

Upon closer inspection, equation (16) can be interpreted as defining a rotation ma-
trix that rotates the inertial z-axis, e3 to the body z-axis, σ̂ . Suppose we have,
e3.σ̂ = cos(φ) and e3× σ̂ = ev, then a choice of quaternion that accomplishes this
rotation is

qr =
[
cos(φ/2) ev

T sin(φ/2)
]T (17)

Theorem 1 is based on a similar formulation in [7].
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3.2 Attitude Control

The error quaternion dynamics derived from (2)-(3) are as follows

ṡ0 =−
1
2

sT
v δω

ṡv =
1
2
(s0δω + sv×δω)

(18)

where δω = ω −R(s)ωr is the error angular velocity. The error angular velocity
dynamics is obtained from equation (3):

J ˙δω = Jω×ω + τ− JΦ (19)

where

Φ =
d(R(s)ωr)

dt
(20)

Equations (18) and (19) have been derived in detail in [15].

Theorem 2. Consider the rotational error dynamics given by (18) and (19). Define
δωd ∈ R3 as,

δωd :=
−kpsv

(sT
v sv)

1− 1
p1

, p1 ∈ (1,2) and kp > 0 (21)

Then the feedback control τ ∈ R3 given by,

τ =−sv− Jω×ω + JΦ + J ˙δωd−
0.5Je

(0.5eT Je)1−1/p1

kp

21/p1
(22)

where

e = δω−δωd ∈ R3 (23)

stabilizes the s0 = 1, sv = 0̄3×1,δω = 0̄3×1 equilibrium of the rotational error dy-
namics in finite time.

Theorem 2 is based on a similar formulation for finite time convergence to desired
attitude as outlined in [6].

Proof. From (19) and (23), we have the following attitude error dynamics:

Jė = Jω×ω + τ− JΦ− J ˙δωd (24)

Consider a Lyapunov candidate and its directional derivative along (18) and (24) as
below.
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V2 = (1− s0)
2 + sT

v sv +
1
2

eT Je = 2(1− s0)+
1
2

eT Je > 0

V̇2 = sT
v δω + eT Jė

= sT
V (e+δωd)+ eT (Jω×ω + τ− JΦ− J ˙δωd)

=−kp(sT
v sv)

1/p1 + eT (sv + Jω×ω + τ− JΦ− J ˙δωd)

(25)

where the final equation is arrived at by substituting for δωd from (21). Further
using (22) in (25),

V̇2 =−kp(sT
v sv)

1/p1 −
kp

21/p1
(0.5eT Je)1/p1

≤−
kp

21/p1
(V 1/p1

1 +(0.5eT Je)1/p1)

≤−
kp

21/p1
(V 1/p1

2 )

(26)

The transition from the first inequality to the second in (26) can be explained by a
direct application of Lemma 1. The above inequality guarantees finite time conver-
gence of the quaternion and angular velocity errors to zero. ut

Theorem 3. Consider the rotational and translational error dynamics given by (10),
(18) and (19). Then the feedback control given by (12) and (22) with qr defined
by (16)-(17) and ωr obtained from kinematics of qr identical to (2), guarantees
asymptotic convergence of (e1,e2) to (0̄3×1, 0̄3×1).

Proof. This is a direct consequence of finite-time convergence of the attitude error
using Theorem 2 employed in the controller of Theorem 1. ut

4 Event-triggered Control

In this section, we extend the continuous time control formulations in Section 3 to
event-triggered strategies by using triggering functions as detailed below. We also
validate the proposed triggering functions by ruling out Zeno behaviour.

Theorem 4. Consider the translational dynamics given in (10). Define a triggering
function f1 : R3×R3×R+→ R,

f1(e1,e2, t) =−V̇ +µ(−k1‖e1‖2− k2‖e2‖2), 0 < µ < 1 (27)

with V defined in (13) and an event-triggered σ(t) as follows:σ(t) =
[
0 0 9.8

]T
− k1ė1− e1− k2e2, i f f1(e1,e2, t)< 0

σ̇(t) = 0̄3×1, otherwise
(28)
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for arbitrary k1 > 0, k2 > 0. Then, with feedback control solving (12) for the mod-
ified σ above, we have exponential stability of the origin of the translational error
dynamics given in (10) and no Zeno behaviour is observed.

Remark: The modified σ ensures that there is no change in feedback control de-
rived using σ(t) unless the triggering condition in (28) is satisfied.

Proof. While the trigger condition f1(e1,e2, t) ≤ 0 in (28) is satisfied, we have
σ(t)=

[
0 0 9.8

]T −k1ė1−e1−k2e2, k1 > 0, k2 > 0 and hence, from (13)-(14), we
have exponential stability of the origin for translational errors given in (10). Further,
when f1(e1,e2, t)> 0, we have directly from (27), V̇ < µ(−k1‖e1‖2−k2‖e2‖2)< 0
and hence exponential stability of origin of translational errors using the common
Lyapunov function method for switched systems in (10) is obtained.

To rule out Zeno behaviour, it is sufficient to show that the inter-execution time
between two events has a positive lower bound (Minimum sampling interval). Let
us consider t1 and t2 to represent times when consecutive events are triggered.

f or t1 < t < t2, V =
1
2

e2
1 +

1
2

e2
2

V̇ < µ(−k1‖e1‖2− k2‖e2‖2)< 0
also, ė1 = e2− k1e1 and ė2 =−e1− k2e2

(29)

Further, since V (e1,e2) > 0 and V̇ (e1,e2) < 0, we have boundedness of V (e1,e2)
which in turn implies that e1 and e2 are bounded. Let G1 and G2 denote their upper
bounds respectively. We obtain norm of the derivative of the error vector as follows:

||Ėt || :=
√

ėT
1 ė1 + ėT

2 ė2 ≤
√

(e2− k1e1)T (e2− k1e1)+(−e1− k2e2)T (−e1− k2e2)

≤
√
|‖e1‖|2(1+ k2

1)+ |‖e2‖|2(1+ k2
2)+2eT

1 e2(k2− k1)

||Ėt || ≤
√

G2
1(1+ k2

1)+G2
2(1+ k2

2)+2G1G2(k2− k1) := αp

(30)

Upon integration of (30), we have∫ t2

t1
||Ėt ||dt ≤ αp(t2− t1) (31)

We also have ∫ t2

t1
||Ėt ||dt ≥ ||

∫ t2

t1
Ėtdt||= ||Et(t2)−Et(t1)||= D (32)

where D is a finite constant that can be computed from the bounds G1 and G2.
Though the analysis holds in a strictly open interior of [t1, t2] this can be extended
by continuity to [t1, t2]. Therefore we have,
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D≤ αp(t2− t1) =⇒ (t2− t1)≥ D/αp (33)

ut

Theorem 5. Consider the rotational error dynamics given in (18) and (19) and defi-
nitions in (20), (21) and (23). Define a triggering function f2 : R×R3×R3×R+→
R

f2(s0,sv,δω, t) =−V̇2 +
−kp

21/p1 V 1/p1
2 (34)

with V2 defined in (25) and an event-triggered feedback control τ(t) as follows{
τ(t) =−sv− Jω×ω + JΦ + J ˙δωd− 0.5Je

(0.5eT Je)1−1/p1

kp

21/p1
, i f f2(s0,sv,δω, t)< 0

τ̇(t) = 0̄3×1, otherwise
(35)

for some positive constant kp. Then the s0 = 1, sv = 0̄3×1,δω = 0̄3×1 equilibrium of
the rotational error dynamics given in (18)–(19) is stabilized in finite time and no
Zeno behaviour is observed.

Proof. While the trigger condition f2(s0,sv,δω, t) ≤ 0 is satisfied we have, τ(t) =
−sv − Jω ×ω + JΦ + J ˙δωd − 0.5Je

(0.5eT Je)1−1/p1

kp

21/p1
and hence, from (25)-(26), we

have finite time stability of the origin of rotational errors given in (18) and (19).
Also, when f2(s0,sv,δω, t) > 0, we have directly from (34), V̇2 <

−kp

21/p1 V 1/p1
2 and

hence finite time stability of origin of rotational errors given in (18) and (19).

To analyse Zeno behavior, we consider as before, ta and tb, the consecutive trig-
ger instants.

f or ta < t < tb, V2 = (1− s0)
2 + sT

v sv +
1
2
(δω−δωd)

T J(δω−δωd)> 0

V̇2 <
−kp

21/p1 V 1/p1
2 < 0

also, ṡ0 =−
1
2

sT
v δω and ṡv =

1
2
(s0δω + sv×δω)

and, ˙δω− ˙δωd =−J−1sv−
0.5e

(0.5eT Je)1−1/p1

kp

21/p1

(36)

Further, since V2(s0,sv,δω) > 0 and V̇2(s0,sv,δω) < 0, we have boundedness of
V2(s0,sv,δω) which in turn implies that s0,sv and δω (and hence also e = δω −
δωd) are bounded. Let G0,Gv and Gω (and also Ge) denote their upper bounds
respectively. We obtain the norm of the derivative of the combined error vector as
follows:
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||Ėr||=
√

ṡT
0 ṡ0 + ṡT

v ṡv + ėT ė

≤
{

1
4
(sT

v δωδω
T sv)+

1
4
(s2

0δω
T

δω +(sv×δω)
T (sv×δω)+2s0δω

T (sv×δω))

+ sT
v sv +

sT
v Je

(0.5eT Je)1−1/p1

kp

21/p1
+

1
4

eT JT Je
(0.5eT Je)2−2/p1

k2
p

22/p1

}1/2

||Ėr|| ≤
{

1
4
(G2

vG2
ω)+

1
4
(G2

0G2
ω +G2

vG2
ω +0)

+G2
v +

JGvGe

(0.5JG2
e)

1−1/p1

kp

21/p1
+

1
4

JT JG2
e

(0.5JG2
e)

2−2/p1

k2
p

22/p1

}1/2

:= αr

(37)

Upon integration of (37), we have∫ tb

ta
||Ėr||dt ≤ αr(tb− ta) (38)

We also have, ∫ tb

ta
||Ėr||dt ≥ ||

∫ tb

ta
Ėrdt||= ||Er(t2)−Er(t1)||= B (39)

where B is a constant that can be related directly to G0,Gv and Gω and also Ge.
Therefore we have,

B≤ αr(ta− tb) =⇒ (ta− tb)≥ B/αr (40)

The above analysis shows that the time between consecutive events (tb− ta) is lower
bounded by B/αr for the attitude event triggering scheme, thus precluding Zeno
behavior. ut

Theorem 6. Consider the rotational and translational error dynamics given by (10),
(18) and (19). Then the event-triggered feedback law given by (12), (28) and (35)
with qr defined by (16)-(17) and ωr obtained from kinematics of qr identical to (2)
guarantees asymptotic convergence of (e1,e2) to (0̄3×1, 0̄3×1).

The proof of the above result follows along the same logic as Theorem 3.

5 Results

Figures 2, 3 and 4 depict the working of the event-triggered exponential and fi-
nite time control strategies. They were obtained via numerical simulations using
MATLAB c©’s ODE solvers. Mass and inertia were taken as 1.79 kg and 0.03I3×3
which correspond to the QBall 2 c© quadrotor as detailed in [5]. Further, gains
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k1,k2,kp and p1 were chosen as 2.1,2.1,0.0009 and 1.6 respectively. Initial condi-
tions on position were taken as

[
0 1 0

]
and on body quaternions were taken as q0 = 1

and qv =
[
0 0 0

]
. Fig. 2 shows a three dimensional visualization of the quadrotor

(depicted by the actual trajectory) tracking the reference trajectory. Fig. 3 depicts the
time evolution of the 4 components of the actual (quadrotor’s) quaternion against the
reference quaternion. Lastly, Fig. 4, plots the triggering instants for the poistion and
attitude controllers. A ◦ represents that an event was triggered and not otherwise.
The minimum inter-event time observed in these simulations was 0.0864 s. It was
also observed that the attitude controller requires faster control changes in the be-
ginning (up to about 8s) which approximately coincides with the attitudes coming
close to the desired values beyond which only minor corrections are required hence
sparse actuation beyond. The position control continues to trigger at slower rates
than the attitude throughout. Further, upon addition of a sinusoidal disturbance of
low frequency (20 Hz) and amplitude (10% maximum value), the proposed control
strategy continues to perform accurately. Figures in 5 depict position and quater-
nion convergence in the presence of aforementioned disturbance. They are indistin-
guishable from figures 2, 3 where no disturbance was present. Only the triggering
schedule differs as seen in figure 6

6 Conclusions and Future Work

An event-triggered algorithm for the quadrotor trajectory tracking problem was pro-
posed in this work. The algorithm in theory guarantees finite time attitude conver-
gence and exponential position trajectory tracking. From the numerical simulation
results and proofs detailed in the previous sections, we can conclude the validity and
efficacy of the proposed event triggered schemes. Further, testing of the schemes on
hardware (Qball 2 c© quadrotor) with VICON c© based feedback is currently under-
way. A facet of this work that deserves to be explored in greater detail is finding
an optimal triggering function to ensure maximum inter-triggering time and also
quantifying precisely the lower bound on inter-trigger times.
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Fig. 4 Triggering binary vs time for attitude (top) and position (bottom) event triggering schemes
(◦ - event was triggered, otherwise - no event triggered)
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Fig. 5 Disturbance enduring convergence of trajectory (left) and quaternion (right) under event
triggered scheme
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Fig. 6 Triggering schedule in the presence of disturbance


