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Abstract Knowledge of the inertia parameters is vital to guarantee a correct attitude
control of a spacecraft. The relatively low accuracy of their estimate prior to launch,
together with possible changes of these quantities, make the in-orbit inertia estima-
tion a problem of great interest. In this work, the estimation of the inertia matrix for
a gyroless satellite is considered. An iterative instrumental variable algorithm is pro-
posed that relies on the star tracker measurements. A semi-adaptive filter is designed
in order to achieve low variance estimates, by taking care of both sensor noise and
torque disturbances. The performance of the proposed algorithm is then analyzed
via Monte Carlo simulations, using data generated from a high-fidelity simulator.
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1 Introduction

Accurate mathematical models of satellite dynamics are essential for the validation
of control algorithms. The mass distribution is the most important parameter that
governs the spacecraft dynamics, and its knowledge is used to build high fidelity
simulators that are later used to test new control laws. However, the satellite inertia
cannot be accurately estimated prior to launch: the estimates from computer-aided
design (CAD) software usually present errors up to 10%; moreover, the mass dis-
tribution may change after launch due to some activities such as fuel consumption
and deployment of solar panels. For these reasons, a precise in-flight estimation of
the satellite inertia parameters has a great importance.

Several works considered the inertia estimation problem. Different methods were
used for the estimation: simple least squares approach (e.g. [1]), extended Kalman
filter (e.g. [2]), joint-dual unscented Kalman filter [3], constrained least-squares
rewritten into semidefinite programming form [4], maximum likelihood method [5].
The majority of these works considered satellites equipped with a gyroscope, and
therefore the angular rate measurement were directly obtained by this instrument.
However, small satellites (Myriade [6], CubeSats, ...) are emerging due to their
lower cost. These types of satellites have less sensor availability compared to bigger
spacecraft, making the attitude determination as well as parameter estimation more
challenging. Usually in larger satellites, both star tracker and accurate gyroscope
(e.g. fiber-optic gyroscopes (FOG)) are used for attitude and rate estimation. How-
ever, in smaller satellites, for size or cost constraints only small MEMS gyroscopes
are used. These gyroscopes present much worse accuracy than FOGs, due to much
higher random walk noise and to an higher sensitivity to the environment conditions.
These type of satellites rely only on star tracker measurements for both attitude and
rate estimation. Studies on attitude and rate estimation in gyroless conditions have
been made, however, few studies focused on the satellite parameter estimation from
star tracker measurements only. In [7] the authors proposed an attitude parameter-
calibration Kalman filter (APKF) that only uses star tracker measurements as well
as reaction wheel speed reading. Beside the attitude and rate estimation, the space-
craft inertia, as well as the sensor misalignment and residual dipole moment were
identified.

In this paper, we propose an instrumental variable (IV) approach to estimate the
satellite inertia without relying on rate sensors. The input-output data used for the
estimation are only the reaction wheel speed readings and the star tracker measure-
ments. One of the reason behind the choice of the IV method consists in its robust-
ness with respect to the initial conditions (due to its convex cost function) and to the
user-parameters.

The paper is structured as follows. Section 2 describes the satellite closed-loop
system. In Section 3, the satellite modeling and the IV approach are described. This
estimation method includes a sub-optimal filtering to improve the identification per-
formance by a significant reduction of the estimation variance. Finally, in Section 4
the performance of the proposed algorithm, tested through Monte Carlo simulations
in a high-fidelity simulator of the satellite Microcarb, is illustrated.
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2 Satellite system

2.1 Satellite Closed-Loop System

For this study we consider the Microcarb satellite. Microcarb is a micro-satellite
that will be launched in 2021 to map sources and sinks of carbon dioxide. Since the
satellite dynamics is unstable (it contains two integrators from torque to attitude),
all the experiments must be carried out under a closed-loop control configuration.
The overall system is shown in Figure 1. Since the spacecraft is gyroless, and to
improve the signal to noise ratio, the feedback includes an extended Kalman filter
(EKF) that estimates the satellite angular rate (required by the controller) from the
attitude measurements (e.g. [8]). The satellite controller structure [9] is as follows

K(s) = (Kp +Kd · s)
1
s

1
1+ τ1 · s

1+ τ2 · s
1+ τ3 · s

, (1)

and it includes the following feedforward control law

K f f = G f f · Jsat · ω̇target(t +∆T ) , (2)

where Jsat is the satellite inertia, ω̇target is the target acceleration, G f f and ∆T are
two tuning parameters.

Fig. 1: Closed-loop satellite system. The equivalent torque generated by the reaction wheels is
represented by Mrw, while r1 and r2 are the reference and feedforward signals, respectively.

2.2 Satellite Dynamic Model

The rotational dynamics of a rigid body, expressed in the satellite body frame, can
be described by the Euler’s equations (e.g. [10])

M(t) = Jω̇(t)+ω(t)∧ Jω(t) , (3)
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with M(t) ∈ R3×1 is the sum of the applied torques, J ∈ R3×3 is the inertia matrix,
ω(t) ∈ R3×1 is the satellite angular rate in the body reference frame, and ∧ is the
cross product operator, where all these variables and parameters are expressed in the
body reference frame. The inertia matrix J has the following form

J =

J11 J12 J13
J12 J22 J23
J13 J23 J33

 , (4)

and the following properties

• J is symmetric (as shown in (4));
• J is positive definite;
• the diagonal terms of J are constrained by the triangle inequality:

Jii < J j j + Jkk ∀ i 6= j 6= k . (5)

The cross product multiplication ω(t)∧ Jω(t) in (3) can be rewritten as

ω(t)×Jω(t) , (6)

where

ω(t)× =

 0 −ω3(t) ω2(t)
ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0

 . (7)

For a satellite equipped with reaction wheels, the dynamics can be described as
follows

−ḣrw(t)−ω(t)×hrw(t)+Md(t) = Jω̇(t)+ω(t)×Jω(t) , (8)

where hrw is the reaction wheel total angular momentum, and Md(t) is the sum of
the disturbance torques applied to the spacecraft. The total disturbance torque de-
pends on several factors: gravity gradient torque, aerodynamic torque, solar radia-
tion pressure, magnetic torque, as well as internal oscillation in the satellite structure
(the satellite is not a rigid body, having flexible elements like the solar panels). A
detailed description of the disturbances is out of the scope of this paper. The reader
may refer to the specific literature (e.g [10]) for further details. The total reaction
wheel angular momentum is defined as follows

hrw(t) =
N

∑
i=1

Jrw,iΩi(t)ai , (9)

where Ωi(t) is the i-th reaction wheel speed, Jrw,i is the i-th reaction wheel iner-
tia (around its spinning axis), and ai is the i-th reaction wheel orientation (in the
satellite reference frame) expressed as a unit vector. In this study the reaction wheel
alignments are considered to be exactly known, therefore their estimation is not
required.
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2.3 Attitude Representation

Quaternions are commonly used for the satellite attitude representation, since they
do not present any singular configuration, at the contrary of the Euler’s angle repre-
sentation (e.g. [11]). In this paper, the following notation is used for the quaternions

q = [q0, q1, q2, q3]
T =

[
q0

q1:3

]
, (10)

where q0 and q1:3 are the scalar and imaginary part, respectively. Details about the
quaternion properties can be found in literature (e.g. [11]). The quaternions describ-
ing the body’s attitude can be directly related to the angular velocity (ω ∈R3×1) and
its derivative in the body reference frame

ω = 2W (q)q̇ , ω̇ = 2W (q)q̈ (11)

where q̇ and q̈ are the quaternion derivatives, and W (·) is defined as follows

W (q) =

 q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0

 . (12)

2.4 Sensors

2.4.1 Reaction wheel sensor

The reaction wheels are usually equipped with Hall-effect sensors or optical en-
coders in order to measure their angular speed Ωi. The speed derivatives, Ω̇i, are
usually computed as a simple numerical differentiation, since these types of sensor
are very accurate. We could assume the readings of Ωi affected by a white noise,
however since angular encoders are usually more accurate than other sensors (e.g.
star tracker), for simplicity we consider these measurements noise free in this study.

2.4.2 Star Tracker

A star tracker provides the attitude measurements from the reference inertial frame
to the satellite sensor frame. Its measurement equation can be described as follows

q = qn⊗qs⊗q (13)

where ⊗ represents the quaternion multiplication operator (e.g [11]), q is the mea-
sured quaternion, qs is the quaternion representing the rotation from the body frame
to the sensor frame (sensor alignment), q is the noise-free quaternion representing
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the satellite attitude, and qn is the quaternion noise that can be approximated as

qn '


1

ex/2
ey/2
ez/2

 , (14)

with
ex ∼ N(0,σ2

x ) , ey ∼ N(0,σ2
y ) , ez ∼ N(0,σ2

z ) (15)

where the three noise components, ex, ey, ez, are considered mutually uncorrelated.
More accurate star tracker models may include also a misalignment/bias term. In
this study, we assume that the sensor alignment (qs) is perfectly known, however, in
the simulations, a small bias term is introduced in the star tracker sensor.

2.4.3 Noise on the Angular Rate Computed from the Quaternions

Let us start by considering the case where the star tracker is aligned with the body
reference frame. The measurement equation (13) becomes

q = qn⊗q , (16)

where, from assumption (14), and by expanding (16) we obtain

q =


q0− exq1

2 −
eyq2

2 −
ezq3

2
q1 +

exq0
2 −

eyq3
2 + ezq2

2
q2 +

exq3
2 +

eyq0
2 −

ezq1
2

q3− exq2
2 +

eyq1
2 + ezq0

2

 , (17)

therefore the measured quaternion can be rewritten as

q = q+ q̃ , (18)

where

q̃ =


− exq1

2 −
eyq2

2 −
ezq3

2exq0
2 −

eyq3
2 + ezq2

2exq3
2 +

eyq0
2 −

ezq1
2

− exq2
2 +

eyq1
2 + ezq0

2 .

 (19)

From (11) the angular rate ω can be computed from the measured quaternions (and
their derivatives)

ω = 2W (q)q̇ = 2W (q)q̇+2W (q̃)q̇+2W (q) ˙̃q+2W (q̃) ˙̃q , (20)

with
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˙̃q =
1
2


−ėxq1− exq̇1− ėyq2− eyq̇2− ėzq3− ezq̇3
ėxq0− exq̇0− ėyq3− eyq̇3 + ėzq2 + ezq̇2
−ėxq3− exq̇3 + ėyq0 + eyq̇0− ėzq1− ezq̇1
−ėxq2− exq̇2 + ėyq1 + eyq̇1 + ėzq0 + ezq̇0

 . (21)

and where ėi represents the numerical differentiation of ei, and therefore having as
variance σ2

ėi
= 2σ2

ei
/(∆T )2 (or σ2

ėi
= 2σ2

ei
/(2∆T )2 in case of the central differenti-

ation) where ∆T is the sampling period.
Equation (21) can be approximated as

˙̃q' 1
2


−ėxq1− ėyq2− ėzq3
ėxq0− ėyq3 + ėzq2
−ėxq3 + ėyq0− ėzq1
−ėxq2 + ėyq1 + ėzq0

 , (22)

assuming
ė q >> e q̇ , (23)

which is a very realistic condition in our satellite scenario.
Since 2W (q)q̇ = ω , the noise on ω is as follows

ω̃ = ω−ω = 2W (q̃)q̇+2W (q) ˙̃q+2W (q̃) ˙̃q . (24)

From assumption (23), and considering that q >> q̃, the overall noise on the angular
rate can be approximated as

ω̃ ' 2W (q) ˙̃q =

ėx(q2
0 +q2

1 +q2
2 +q2

3)
ėy(q2

0 +q2
1 +q2

2 +q2
3)

ėz(q2
0 +q2

1 +q2
2 +q2

3)

=

ėx
ėy
ėz

 , (25)

since q(t) is a unit quaternion.
From this result, the overall noise on the angular rate is directly related to the

noise on the quaternions, and if the noise e is zero-mean and with components mu-
tually uncorrelated, the same can be said for ω̃ .

In the more general case where the star tracker is not aligned with the body
reference frame, an additional rotation must be performed. Therefore the angular
rate ω in the satellite frame can be written as

ω = Rωst , (26)

where ωst is the angular rate in the star tracker reference frame and R is the rotation
matrix moving from the star tracker to the body reference frame. If the three com-
ponents of the noise e have the same same standard deviation σe then, even after the
rotation the noise term ω̃ remains zero-mean with its three components mutually
uncorrelated. However, if the three noise components have different variance, then
there will be a correlation between ω̃x, ω̃y and ω̃z.
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3 Satellite Inertia Estimation

3.1 Satellite Model in Linear Regression Form

Equation (8) can be rewritten in linear regression form as

−ḣrw−ω
×hrw +Md =

(
Γ
(
ω̇
)
+ω

×
Γ
(
ω
))

θ . (27)

where θ = [J11, J22, J33, J23, J13, J12]
T and, given a vector x = [x1, x2, x3]

T , the op-
erator Γ (·) is defined as follows

Γ (x) =

x1 0 0 0 x3 x2
0 x2 0 x3 0 x1
0 0 x3 x2 x1 0

 . (28)

3.1.1 Noise Term in the Linear Regression Model

The overall effect of the noise must be studied on the full dynamic model. Consid-
ering the equation

ω = ω + ω̃ , (29)

where ω is the noise-free satellite angular rate, the system in linear regression form
can be rewritten as

−ḣrw− (ω− ω̃)×hrw +Md =

(
Γ

(
ω̇− ˙̃ω

)
+(ω− ω̃)×Γ

(
ω− ω̃

))
θ , (30)

or to keep the notation simpler

−ḣrw− (ω− ω̃)×hrw +Md = φ
T
(

ω̇, ω

)
θ . (31)

Following the approach shown in [12], the regressor matrix φ can be split into three
terms

φ = ψ−δ − ε , (32)

where

ψ
T = Γ (ω̇)+ω

×
Γ (ω) , (33)

δ
T = Γ ( ˙̃ω)+ ω̃

×
Γ (ω̃) , (34)

ε
T = ω

×
Γ (ω̃)+ ω̃

×
Γ (ω) . (35)

The overall system equation can be rewritten as
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−ḣrw−ω
×hrw = ψ

T (ω̇,ω)θ +ν−Md , (36)

where ν = −δ T θ − εT θ − ω̃×hrw. The noise term ω̃ appears in a quadratic form
only in the second term of (34) as 0 −ω̃2ω̃3 ω̃2ω̃3 (ω̃2

2 − ω̃2
3 ) ω̃1ω̃2 −ω̃1ω̃3

ω̃1ω̃3 0 −ω̃1ω̃3 −ω̃1ω̃2 (ω̃2
3 − ω̃2

1 ) ω̃2ω̃3
−ω̃1ω̃2 ω̃1ω̃2 0 ω̃1ω̃3 −ω̃2ω̃3 (ω̃2

1 − ω̃2
2 )

 . (37)

Even if the noise term e is assumed to be zero-mean (15), the overall noise ν may
have non-zero expected value due to its nonlinear terms (37). Only if σx = σy = σz
(and ω̃1, ω̃2, ω̃3 are mutually uncorrelated) the nonlinear noise terms (37) are overall
still zero-mean. Otherwise, if each axis presents a different noise standard deviation
(common for star trackers), then E(ν) 6= 0, where E(·) is the expectation operator.

From now on, we will consider the regressor ψT (·) directly as function of the
quaternions and their derivatives

ψ
T
(

q(t), q̇(t), q̈(t)
)
= Γ

(
2W (q(t))q̈(t)

)
+
(

2W (q(t))q̇(t)
)×

Γ

(
2W (q(t))q̇(t)

)
,

(38)
and therefore the overall model in linear regression form becomes

−ḣrw(t)−
(

2W (q(t))q̇(t)
)×

hrw(t) = ψ
T
(

q(t), q̇(t), q̈(t)
)

θ +ν(t)−Md(t) . (39)

3.2 Derivative Estimates

The model (39) is function of the attitude quaternion q(t), as well of its deriva-
tives q̇(t), q̈(t). However the star tracker provides only the angular position q. The
simplest solution would be to perform a numerical differentiation, having as main
drawback a significant noise amplification. A way to limit the noise amplification
consists in filtering the signal before performing the differentiation. The filter should
not create any phase lag, therefore a smoothing operation based on a Butterworth
low-pass filter has been used, where the filter is applied on both directions in order
to cancel any phase lag inherent in the simple filtering. The filter cut-off frequency
must be chosen larger than the noise-free signal bandwidth in order to avoid any
distortion.

3.3 Instrumental Variable Method for Inertia Parameter Estimate

For this work, an instrumental variable (IV) method has been chosen for the esti-
mation of the inertia parameters from the telemetry data. The IV method has been
studied for several years since it is able to overcome some of the limitations of the
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least square method while retaining its simplicity (e.g. [13] and [14]). Several form
of IV algorithms have been developed, with the principal objective of achieving the
smallest variance of the estimate, like the refined IV (e.g. [15]). The IV method
was applied recently for a similar, but simpler (presence of gyroscope and ideal
spacecraft dynamics), satellite estimation problem in [16].

The main reasons behind the choice of an IV approach are the following: it can
be applied to a linear regression form model (with respect to the parameters) inde-
pendently whether the states appear linearly; it relies on a convex cost function with
an analytical solution; it is able to overcome the least squares limitation regarding
the consistency of the estimates; since the system presents “mild” nonlinearities (at
the typical satellite angular rate the gyroscopic term has a minor impact compared
to the linear term), approximate optimal filtering can be applied (and therefore it can
achieve estimates close to minimum variance).

3.3.1 Instrumental Variable Method

Given the model in linear regression form

Mrw(t) = ψ
T
(

q(t), q̇(t), q̈(t)
)

θ +ν(t)−Md(t), (40)

where Mrw(t) = −ḣrw(t)− (2W (q(t))q̇(t))×hrw(t) , the IV solution consists in the
minimization of the following cost function

θ̂IV = argmin
θ

N

∑
k=1

∣∣∣∣∣∣Z(tk)(Mrw(tk)−ψ
T (tk)θ

)∣∣∣∣∣∣2 , (41)

with N being the number of samples, and where the “instrument” ZT has to respect
the following properties in order to guarantee consistent estimates:{

E(ZψT ) is non singular
E(Zν) = 0

(42)

where E(·)= limN→∞
1
N ∑

N
k=1 E(·) . The IV method has an analytical solution closely

related to the least squares one (e.g. [14])

θ̂IV =
[ N

∑
k=1

Z(tk)ψ
T (tk)

]−1[ N

∑
k=1

Z(tk)Mrw(tk)
]
, (43)

or more simply as
θ̂IV = (Z ψ

T )−1(Z Mrw) , (44)

where
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ψ
T =


ψT (t1)
ψT (t2)

...
ψT (tN)

 , ZT =


ZT (t1)
ZT (t2)

...
ZT (tN)

 , Mrw =


Mrw(t1)
Mrw(t2)

...
Mrw(tN)

 . (45)

One of the IV method steps consists in building an instrument that is uncorrelated
with the noise components. The best instrument is the one that, while respecting the
uncorrelatedness with the noise ν , is as much correlated as possible with the orig-
inal regressor ψT . Ideally, the optimal instrument is the noise-free version of the
regressor ψT . There are two common choices for the instrument (e.g. [13]): the first
consists in using a delayed version of the regressor as instrument, the second uses
an “auxiliary model” (together with an input signal) to generate noise-free state es-
timate from which an estimated noise-free regressor is built and used as instrument.

However, by solving (44), even with an ideal optimal instrument, we would
be able to guarantee only consistency of the estimates, while the variance could
be still large (this approach is called simple IV method). Optimal IV methods
(optimal in the sense of minimum variance) have been studied for several years,
considering open-loop linear systems (e.g. [15], [13]), closed-loop linear systems
(e.g. [17], [18], [19]), as well as continuous-time systems (e.g. [20], [21]). From
these studies, optimal filters have been identified in order to guarantee minimum
variance. A detailed description of the general optimal IV method and its relative
proof is out of the scope of this paper, and the reader may refer to the previously
cited works. The main result from these studies that will be later used is the follow-
ing:

given a Box-Jenkins model

y(tk) =
B(s)
A(s)

u(tk)+
D(s)
C(s)

e(tk) , (46)

the optimal prefilter is

Fopt =
1

A(s)
C(s)
D(s)

, (47)

where u(t), y(t), e(t) are the input, the output and a white noise, respectively, while
A(s), B(s), C(s), D(s) represent polynomials1 characterizing the system model
structure (A(s), B(s)) and the noise model structure (C(s), D(s)). The filter is then
applied to the model (regressor, instrument, and “input”) and the solution has the
same form as (44)

θ̂IV = (Z f ψ
T
f )
−1(Z f Mrw f ) . (48)

Even if there are no optimal filters for nonlinear systems, if the parameters appear
linearly, the IV approach can still be applied and achieve good performance, as
shown in [22] where the authors used an IV method for industrial robot model iden-
tification.

1 In this model, s represents the differential operator.
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3.3.2 IV Implementation for Satellite Inertia Estimate

Building the instrument

In this work, the instrument is built from estimated (noise-free) states. We assume
that the satellite controller is known, as well as the actuator dynamics, and that
the reference signals r1 and r2 (representing the reference path and feedforward, as
shown in Figure 1) are available. The instrument is built as follows:

1. From an ”initial” knowledge of the inertia, the satellite dynamic model is built
(considered as a rigid body). Then, since the controller and actuator are known,
a full closed-loop auxiliary model can be built (as shown in Figure 2);

2. The closed-loop auxiliary model is simulated by using the reference signals as
input (r1 and r2), and an estimate of the noise-free quaternion q̂(t) is generated,
as well as their derivatives ˙̂q(t), ¨̂q(t);

3. The instrument is built as ZT (t) = ψT (q̂(t), ˙̂q(t), ¨̂q(t)).

Since this instrument is built from noise-free reference signal, it is theoretically
uncorrelated with the noise term ν(t), while the use of the same reference as the real
system ensures a high correlation with the regressor ψT (q(t), q̇(t), q̈(t)). Generating
the noise free-signals from the reaction wheel output, using an open-loop model
(Figure 3), would have been not optimal, since the presence of the disturbance Md(t)
would have generated a drift on the estimated q̂(t) and ˙̂q(t). Theoretically, the use
of the closed-loop auxiliary model can be additionally justified since the feedback
signal correlates the input signal (in this case the reaction wheel generated torque)
with the noise (e.g. [17]), however, in this scenario since an EKF is present in the
feedback, the effect of the noise reaches the output quaternions very attenuated and
has therefore a negligible effect on the regressor. It should be noted that even if
the actuator dynamics is not perfectly modeled, the generated instrument will still
respect the two properties (42) therefore consistent estimates will be guaranteed
(there will be instead a slight increase in the variance).

Fig. 2: Closed-loop auxiliary model.

Fig. 3: Open-loop auxiliary
model.

Sub-optimal Filtering

As shown in (39), the system is nonlinear, and the IV theory does not provide any
solution in order to obtain an optimal filter for the estimation. However, by lineariz-
ing the model, a sub-optimal filter can be estimated. The system (39) can be seen
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as
g(y(t), ẏ(t),u(t)) = f (u(t), u̇(t), ü(t),θ)+ν(t)+Md(t) , (49)

where u(t) represents the state q(t), and y(t) represents the input hrw(t). Model (49)
is written as in (46), and some considerations can be made. Firstly, the function f
does not have any integrator term, but only derivatives, therefore, even after lin-
earization, it will have no effect on the filter choice (A(s) = 1). Secondly, the lin-
earization of the noise components ν(t) and the term Md(t) will give us the infor-
mation to build a sub-optimal filter.

Let’s consider first the case with no disturbance torque Md(t). As shown in (34-
36), the noise term ν(t) is function of the inertia parameters θ , and of hrw(t) and
ω(t). By linearizing the system around hrw0 and ω0 (and using a previous estimate
of θ ) a first approximation of D(s)

C(s) can be obtained. Since the noise is not affected
by the sign, the linearization point has been chosen as the average of the absolute
value of hrw and ω

hrw0 =
1
N

N

∑
k=1

∣∣∣hrw(tk)
∣∣∣ , ω0 =

1
N

N

∑
k=1

∣∣∣ω(tk)
∣∣∣ . (50)

Since the system is multiple-input and multiple-output (MIMO), the following type
of linearized noise model is first obtained

DL(s) =

a11 a12 a13
a21 a22 a23
a31 a32 a33

s +

b11 b12 b13
b21 b22 b23
b31 b32 b33

s2 , CL(s) = 1 , (51)

where we kept a continuous-time notation. To further simplify (51), the matrices
have been diagonalized, replacing the diagonal terms with

ai =
√

a2
i1 +a2

i2 +a2
i3 , bi =

√
b2

i1 +b2
i2 +b2

i3 for i = 1 : 3 , (52)

and therefore D(s) becomes

DL(s) =

a1 0 0
0 a2 0
0 0 a3

s +

b1 0 0
0 b2 0
0 0 b3

s2 . (53)

Finally, an additional simplification is performed: since the term ai (as well as bi)
are very close to each other, the average of ai and of bi is used for all the three
dimensions, obtaining three identical scalar noise models

DL(s) = a · s+b · s2 . (54)

Given this linearized noise model and from (47), the sub-optimal filter for each input
and regressor component would have therefore the following form
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Fsopt (s) =
CL(s)
DL(s)

=
1

bs2 +as
. (55)

This filter has very high performance in the disturbance free case, however it will
underperform (will achieve higher variance) if disturbances are present since the
filter (55) will integrate Md .

In order to take into account the disturbance in the filter choice, the disturbance
torque must be modeled. We approximated the disturbance as a filtered random walk

Ṁd =−γ Md +η where ηx ∼ ηy ∼ ηz ∼ N(0,ση) . (56)

where γ is an empirical value (e.g. γ = 0.002s−1) that considers the very low-pass
behavior of the main disturbance components. Alternatively, the disturbance torque
could be modeled by a simpler integral random walk noise Ṁd = η , like in [7].

The noise term including the disturbance can be then approximated as

νx = (bs2 +as)ex +
1

s+ γ
ηx . (57)

In order to “merge” the terms, the ratio between σe and ση must be computed.
The value of σe can be easily obtained from the sensor datasheet, while for ση , a
rough estimate can be obtained from the knowledge of the typical disturbance torque
magnitude. The overall noise transfer function can be then written as

bs2 +as+
ση/σe

s+ γ
, (58)

and the filter takes the form

Fsopt (s) =
s+ γ

c3s3 + c2s2 + c1s+ c0
(59)

Iterative IV algorithm

The overall IV algorithm can be summarized as follows

1. apply the smoothing filter to the quaternion measurements q(t) and compute their
time derivatives (q̇(t), q̈(t));

2. apply the least squares method to obtain a first inertia parameter estimate θ0
(an additional low-pass second order filter can be applied to improve this initial
estimate);

3. update the auxiliary model and the filter Fsopt (s) with the new inertia values;
4. generate the noise-free quaternion estimates q̂(t) (and their derivatives) from the

closed-loop auxiliary model and the reference signals r1(t) and r2(t);
5. build the instrument from q̂(t), ˙̂q(t) and ¨̂q(t);
6. filter the regressor, the instrument and the input vector (Mrw(t)) with the filter

Fsopt (s), obtaining
ψ

T
f (t) , ZT

f (t) , Mrw f (t) ; (60)
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7. estimate the inertia with the IV method

θ̂IV =
[ N

∑
k=1

Z f (tk)ψ
T
f (tk)

]−1[ N

∑
k=1

Z f (tk)Mrw f (tk)
]
, (61)

Repeat steps 3-4-5-6-7 until θ̂IV reaches convergence (usually the convergence is
reached in 3 iterations).

Augmented regressor and instrument

We mentioned that the overall noise term ν , depending on the star tracker orien-
tation and noise standard deviation, may have non-zero expected value. In order
to prevent biased estimates for this condition, the regressor and instrument can be
augmented [12]

ψ
T
aug(tk) =

[
ψT (tk) , I3

]
, ZT

aug(tk) =
[
ZT (tk) , I3

]
∀ k ∈ [1...N] , (62)

where I3 ∈R3×3 is the identity matrix. The parameter vector estimate θaug will con-
tain the 6 inertia parameters, as well the 3 additional bias estimate. This augmented
approach will also estimate possible constant components of the disturbance torque
Md(t).

In the satellite scenario, the obtained filter (48) has a very slow dynamics, there-
fore the initial conditions of the filter have a significant impact on the inertia esti-
mates. Waiting for the end of the transient behavior may results in discarding a sig-
nificant portion of the data, therefore an alternative solution consists in estimating
the filter initial condition together with the inertia parameters. The solution consists
in augmenting the regressor and instrument, similarly to (62):

ψT
aug(tk) =

[
ψT (tk) , Tr1(tk) Tr2(tk) Tr3(tk)

]
,

ZT
aug(tk) =

[
ZT (tk) , Tr1(tk) Tr2(tk) Tr3(tk)

]
,

(63)

where Tri(tk) are the transient behaviors corresponding to each one of the 3 filter
poles.

4 Simulation Results

The proposed estimation method has been tested through numerical simulations.
The Microcarb gyroless satellite, from the Myriade class, is considered as space-
craft. In order to generate the data, a high fidelity simulator from CNES2 has been
used. The main parameters of the simulators are shown hereafter. The nominal satel-
lite inertia matrix is

2 French Space Agency.
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Fig. 4: Attitude and angular rate reference profile.

J0 =

20.3852 −3.7497 −1.7515
−3.7497 24.5764 0.7836
−1.7515 0.7836 29.0328

 [kgm2]. (64)

The satellite is controlled by four reaction wheels. Since we assumed that the ac-
tuator alignments are known as well as their inertia, and that the noise on the reac-
tion wheel speeds is negligible, we have direct access to the reaction wheel angu-
lar momentum hrw. All the sensor sampling frequencies are set to 4Hz. The noise
standard deviation on the star tracker was set as σx = σy = 11.7 · 10−6 rad and
σz = 93 ·10−6 rad. The star tracker model had also bias and harmonic (at the orbital
frequency) noise terms: the bias was set to bx = by = 58 ·10−6rad ,bz = 53 ·10−6 rad,
while the harmonic amplitude was αx = αy = 8 ·10−6rad ,αz = 23 ·10−6rad (both
in the star tracker frame). All the main types of disturbance torques are consid-
ered3: aerodynamic torque, solar radiation pressure, magnetic torque, gravity gra-
dient torque, as well as internal oscillation in the structure (mainly due to flexible
elements like solar panels). Additionally, the satellite is equipped with a scanning
mirror, that is generating additional disturbances. During the simulations, the solar
panel are kept fixed in order to avoid any change of the satellite inertia during the es-
timation. The control law is described in (1) and (2). The reference guidance profile
is shown in Figure 4, and it is kept the same for every simulation. Figure 5 shows
the input-output of the satellite for a single simulation.

Two types of Monte Carlo simulations are performed: the first one consists in
having a star tracker following the simple model (16), while the second considers
a more realistic case, where also bias and harmonic noise terms are considered. In
order to have a different disturbance torque profile, the initial satellite orbit position

3 The satellite is operating in low Earth orbit (LEO).
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Fig. 5: Input (reaction wheel total angular momentum) and output (in quaternions) of the satellite.

10
-4

10
-3

10
-2

10
-1

10
0

Frequency (rad/s)

-40

-20

0

20

40

M
a

g
n

it
u

d
e

 (
d

B
)

Fig. 6: Magnitude Bode plot of the filter used in the IV method.

is different in every simulation. A typical magnitude Bode plot of the filter used by
the IV method is shown in Figure 6.

Table 1 shows the results from a Monte Carlo simulation of 100 runs. In both
cases the estimates present a low variance and a slight bias, however, the presence
of bias in the quaternions does not seem to have a significant impact in the perfor-
mance. The slight bias is mainly due to the disturbance torque, while, even in the
biased star tracker case, the correlation between the noise term e and the noise free
quaternions q is too small to generate any significant change (as shown in the com-
parison of Table 1). The table includes also the results from a least squares algorithm
with a second-order low pass filter, used as comparison, which shows a considerably
higher variance.

The main user-parameter to be set is the ratio between ση and σe. Figure 7 shows
the mean square errors of the inertia estimates for different ratios, in order to demon-
strate the algorithm robustness.
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J11 [kgm2] J22 [kgm2] J33 [kgm2] J23 [kgm2] J13 [kgm2] J12 [kgm2]

mean st.d. mean st.d. mean st.d. mean st.d. mean st.d. mean st.d.
θ̂LS 20.431 0.034 24.687 0.033 29.021 0.036 0.766 0.033 -1.742 0.031 -3.783 0.041
θ̂IV1 20.397 0.006 24.625 0.008 29.054 0.008 0.776 0.011 -1.742 0.009 -3.743 0.005
θ̂IV2 20.397 0.006 24.625 0.008 29.055 0.008 0.776 0.010 -1.741 0.009 -3.743 0.005
θ0 20.385 24.576 29.033 0.784 -1.751 -3.768

Table 1: Results from a Monte Carlo simulation of 100 runs using different satellite starting orbit
positions. The true value is represented by θ0. θIV1 is the inertia estimate for the unbiased star
tracker, whereas θIV2 is for the biased case. In this simulation settings, the performance difference
is negligible. Additionally, θLS shows the results from a least squares method with a second order
low-pass filter.
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Fig. 7: Sum of the mean square errors (MSE) of the 6 inertia parameter estimates for different
values of the user-parameter τσ . The value of τσ is represented as its ratio with an empirical
optimal value τopt .

5 Conclusions

A satellite inertia parameter estimator based on an IV approach has been imple-
mented. Unlike common inertia estimators, the proposed iterative IV method does
not require gyroscope measurements and it can just rely on attitude sensors. A semi-
adaptive filter for the IV method has been proposed, that takes into account both the
sensor noise and the disturbance torque in order to achieve close to minimum vari-
ance. The overall method removes some of the theoretical limitations of the least
squares method, while, thanks to its convex cost function, it is robust with respect to
the initial conditions, and also with respect to the main user-parameter (ση/σe). The
overall algorithm performance has been demonstrated via Monte Carlo simulations,
using data generated by a high-fidelity simulator provided by CNES. Additional
works will consider the estimation of the actuator alignments, improvement of the
disturbance rejection, online implementation of the algorithm, and the choice of
optimal maneuvers in order to improve the information content of the data.
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