
1 
 

Improved Image Navigation and Registration (INR) 
Algorithms 

 
Ahmed Aly Kamel 

 
 
 

Abstract  Improved image navigation and registration algorithms are presented based on 
Kalman filter to allow near real-time delivery operation of level 1B data blocks and 
LRIT/HRIT subimages (instead of a whole image) to users. Kalman filter estimates 
attitude correction angles, orbit position relative to ideal geostationary orbit, and internal 
misalignments of imagers with single mirror or two mirrors. Kalman filter  measurements 
consist of landmarks extracted from the imaging instrument level 1A data blocks, orbit 
maneuver delta V or coarse orbit from flight dynamics, and spacecraft inertial angular 
rate telemetry inserted in the imager wideband data. The state vector most significant 
improvement represents the effect of scan mirror axes orthogonality misalignment angle 
due to thermal variation and measurement errors. This improvement is shown to be in the 
north-south direction and equals to the orthogonality misalignment angle  
multiplied by the tangent of the east-west scan angle. The improved image navigation and 
registration algorithms are also applicable to systems with star and landmark 
measurements and systems with star only measurements. 
 
Nomenclature 
 
   ABI :  advanced baseline imager 
   ACF :  attitude control frame 
      C :  cosine 
  COMS :  communication, ocean, and meteorological satellite 
   ECLF :  earth centered local frame 
     EW :  east-west 
    FDS :  flight dynamics system 
    FGF :  fixed grid frame 
    FPM :  focal plane module 
   GOES :  geostationary operational environmental satellite 
    GPS    :  global positioning system 
    HRIT  :  high rate information transmission 
    IIRF :  instrument internal reference frame 
    IMC :  image motion compensation 
    IMU   :  inertial measurement unit 
    INR :  image navigation and registration 
    IOT    :  in orbit test 
     KF :  Kalman filter 
      L :  geocentric latitude  
  LOS :  line of sight 
  LRIT :  low rate information transmission 
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  LRF :  LOS reference frame 
   NS       :  north-south  
   O :  orthogonality  
   OD  :  orbit determination 
    P      :  landmark or point on earth  
ParSEC   :  parametric systematic error correction 

      R :  radius  

     S :  sine 

    SV :  state vector 

    UTC :  coordinated universal time 

     V :  velocity 

      θ :  pitch angle 

      λ :  longitude 

 ϕ :  roll angle 

 ψ :  yaw angle 

Subscripts 
att :  attitude  
C :  combined 

corr :  correction  
eq :  equator 
m :  misalignment or number of misalignments 
0 :  initial 
S :  spacecraft 

1 Introduction 

The purpose of this paper is to improve the generalized image navigation algorithm 
provided in Ref.[1] based on the improved misalignment equations provided in Ref. [2]. 

The term Image Navigation and Registration and the INR acronym were coined by 
Kamel [3] and patented in US patents # 4,688,091, 4,688,092, and 4,746,976 to represent 
a system that determines image pixel location and registers it to fixed grid. This original 
system was designed to meet GOES I-M (the first generation of 3-axis stabilized GOES 
satellites) requirements. IMC onboard spacecraft was used to meet three sigma navigation 
requirements of 112 microradians and three sigma registration requirements of 42 
microradians. 

The original INR invention became the foundation for subsequent GOES and similar 
systems worldwide[4-8]. The INR system requirements have been tightened as the 
spacecraft and ground systems hardware has been improved [9-15]. For example, the 
three sigma GOES N-P and COMS navigation requirements were tightened to 56 
microradians and GOES-R navigation requirement was tightened to 21 microradians.  

The image navigation part of INR relates to determining LOS absolute pointing. In this 
paper, this determination is performed for FGF originally used by Kamel [1] and became  
the standard for subsequent GOES[16].  
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Section 2 defines the INR and KF state vectors needed for the improved image navigation 
process for imagers with single mirror as well as imagers with two mirrors[13]  

Section 3 describes the improved fundamental algorithm which is based on landmark 
measurements, inertial angular rate IMU telemetry, and orbit maneuvers delta V (or orbit 
with coarse accuracy) to determine attitude correction, orbit (or orbit refinement), and 
imager internal misalignments. COMS simulations [8] demonstrated that the fundamental 
algorithm meets the 56 microradians navigation requirement with margin.  

Section 4 shows the effect of the improved misalignment equations due to the scan axes 
orthogonality angle Om can be up to 0.2 Om on image navigation and up to 0.3 Om on within 
frame registration for single mirror instruments as well as for two mirror instruments. 

The presented algorithms can be applied to systems with star measurements in addition 
or instead of landmark measurements. In this case, star measurements are used to determine 
attitude correction angles and imager misalignments, and landmark measurements are used 
to determine orbit (see Sect. 4.1 of Ref. [1]).  If star measurements are used with no 
landmark measurements, orbit must be provided by FDS or GPS (see Sect. 4.2 of Ref. [1]). 
Finally, the presented algorithms can also be used for IMC onboard spacecraft like in Sect. 
5 of Ref. [1] and for ground resampling like in Sect. 6 of Ref. [1]. 

2 Definitions 

Section 2.1 defines the reference frames needed for transformation of LRF pixel 
coordinates (ELRF, NLRF) to its fixed grid coordinates (E , N ). Section 2.2 defines the 
INR SV and KF SV needed for landmark residual computation shown in Fig. 1. Section 
2.3 defines the time series approach used to determine the INR SV and KF SV values at 
a given time within the imagery data block. 

 
Fig. 1  INR and KF State Vectors Computations 

2.1  Reference Frames 

The reference frames are used for transformation of LOS coordinates from LRF to FGF.  
LOS Reference Frame (LRF) 
This frame is shown in Fig. 2 and it is attached to the instrument nadir position. The scan 
angles (ELRF, NLRF) are positive East and North where NLRF is a rotation about XLRF axis 
and ELRF is a rotation about the rotated (dotted) Y-axis. 
Instrument Internal Reference Frame (IIRF)                                                                         
This frame is shown in Fig. 2 and it is attached near the instrument mounting frame to 
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spacecraft. Therefore, it is also called Virtual Instrument Mounting Frame (VIMF)[17] 
The (EIIRF, NIIRF) are positive East and North where NIIRF is a rotation about XIIRF axis  
and EIIRF is a rotation about the rotated Y-axis.   
Misalignments are produced by thermoelastic deformation. These misalignments and 
biases prevent IIRF axes to be ideally parallel to LRF axes. For single mirror instruments, 
(EIIRF, NIIRF) are determined from (ELRF, NLRF) and six misalignment 
angles(ϕ , θ , O , O  , O , ψ ). For two mirror instruments [13], (EIIRF, NIIRF) are 
determined from (ELRF, NLRF) and four misalignment angles (O , O  , O , ψ ).  
 

 
Fig. 2 LRF, IIRF, and FGF Coordinates Definitions 
 
Attitude Control Frame (ACF) 
This frame has its origin at the spacecraft center of gravity. Thermoelastic deformation 
and misalignment biases prevent ACF axes to be ideally parallel to the IIRF axes. Rotation 
angles of ACF relat ive to IIRF are defined as (roll,  pitch, yaw) atti tude  
correction angles (ϕ ,  θ ,  ψ ). 
Fixed Grid Frame (FGF) 
The FGF is shown in Figs. 2 to 5 and it defines the resampled image after orbit, attitude, 
and thermoelastic effects are removed. The fixed grid coordinates ( E , N ) are 
consistent with the parameters (λ, λ0, ϕc, -Sy, -Sz, Sx, x, y) in Fig. 4.2.8 and section 4.2.8.2 
of GOES-R Pug [16]. These parameters are the same as (λP, λ , LP, Xi, Yi, Zi, E , N ) 
in Sect. 3.5.1 of this paper.  

The ideal axes (Xi, Yi, Zi) represent FGF. The origin of these axes is aligned with the 
spacecraft ideal longitude λ  as shown in Figs. 3 and 4.  Positive yaw Z-axis is oriented 
towards earth center, positive pitch Y-axis is oriented towards earth south direction, and 
X-axis forms a right-handed triad. The ideal axes (Xi, Yi, Zi) translate and rotate relative 
to IIRF. They are parallel to IIRF when (ϕ , θ , ψ ) = (0,0,0) and they are the same as 
IIRF if the orbit translational part (∆R /R , ∆λ , L ) is also = (0,0,0). 
Earth Centered Local Frame (ECLF) 
This frame is shown in Figs. 2 to 4 and its origin is at the center of the earth. Positive 
XECLF axis is oriented towards the spacecraft ideal longitude λ  as shown in Fig. 3, 
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positive ZECLF axis is oriented towards earth north direction, and positive YECLF axis forms 
a right-handed triad. 
 

 
Fig. 3 Ideal FGF Translation Relative to IIRF 

 

 
Fig. 4  Ideal FGF Translation and Rotation Relative to IIRF 

 

2.2   INR State Vector 

The SVINR is required for pixel coordinate transformation from (E , N )  to 
(E , N ) as described in section 3.5.2. This is given by 

 
                  SV = [ SV    SV  SV ]                               (1.1)             
where 
(Xi, Yi, Zi) are the same as (XLRF, YLRF, ZLRF) when SVINR = 06+m.   
SV  is combined attitude state vector representing FGF axes orientation relative to IIRF. 
SV  is orbit translation state vector representing FGF translation relative to IIRF. 
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SV  is misalignment state vector representing IIRF misalignment relative to LRF. 
 
    SV  = [ϕ  θ  ψ ] = SVcorr + SVACF                                   (1.2)              
     SV = [ϕ   θ   ψ ] = SV ,  + x               (1.3) 

   SVACF = [ϕ   θ   ψ ]                            (1.4) 

   SV = [∆R R  ⁄    ∆λ       L ]                            (1.5) 
   ∆R R  ⁄ = (R −  R )/R , Δλ = λ − λ                           (1.6) 

   SV  =  SV ,  + x                                        (1.7) 

and 
(SV , , SV ,  ) are computed in section 3.10.  

(x , x ) are defined in Eqs. (4.1), (4.2), and (5.2)  and determined by KF. 
R = spacecraft geosynchronous radius. 
RSi = ideal geostationary radius = 42164160 meters. 
(L , λ , λ ) = spacecraft (geocentric latitude, longitude, ideal longitude) 
(∆R R ,⁄  Δλ ,  L ) are called Kamel parameters [3,17,18] because they were originally 
used by Kamel [3] for GOES I-M [18] to represent actual orbit deviation from ideal 
geostationary orbit produced by spherical earth with no perturbations. In this paper, these 
parameters are determined by KF or by a combination of FDS orbit and refinement by 
KF. If FDS provides maneuver delta V 

 SV = x =  δR /R    δλ     δL  = ideal orbit refinement by KF             (2) 

If FDS provides coarse orbit instead of delta V 

 SV = [∆R R  ⁄    Δλ    L  ]  +   x              (3.1) 

               x = δR /R    δλ     δL    = FDS orbit refinement by KF                     (3.2) 

Now, SVm in Eqs. (1.1) and (1.7) represents internal instrument misalignments as 
described in Sect. 2.1. For single mirror instruments, such as in GOES I-P, COMS, and  
MTSAT2, SVm is given by Eq. (31.3) of Ref.[2] 

 
          SV  = [ϕ    θ   O   O   O   ψ ] =  SV ,  + x               (4.1) 
 
For two mirror instruments [13] such as in GOES-R, Himawari, and GK-2A, SVm is 

given by Eq. (44.2) of Ref.[2] 
     SV = [O   O   O   ψ ]  =  SV ,  + x                       (4.2) 

 
Kalman filter state vector 
   SV  ≡ x is used for simplicity and it is given by 

           SV  ≡ x = [x   ẋ   x    ẋ    x    ẋ ]                      (5.1) 

x = δSV , ẋ = constant.                                                                        (5.2) 

x = δSV = δR /R    δλ     δL  , ẋ = δSV̇ = δṘ /R     δλ̇    δL̇     (5.3) 

x  = δSV  , ẋ = constant.                 (5.4) 
 
Now, Kalman filter state equation is based on attitude correction, orbit, and 

misalignment kinematics [see, e.g., Eq. (13-78) of Ref. [19], with u =0] 
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                                                     ẋ = Fx + w                                               (6.1) 

F is state matrix and w is process noise vector  

F =

F    0     0
0     F     0
0   0   F

, F =
0      I

  0     0
,   F =

0      I
  0       0

           (6.2)     

F =
0          I

ω F     2ω F
 , F =

3      0      0
0     0      0
0     0 − 1

, F =
 0     1       0

−1      0      0  
   0      0      0

           (6.3) 

 
 𝜔 = sidereal earth rotation rate = 7.2921159E-05 rad/sec                                  (6.4) 

F  and F  are obtained from Eqs. (5.2) and (5.4) and Forb is obtained from Euler-
Hill’s equations, e.g., Eq. (12.17) of Ref. [20], with n replaced by ω  and (x, y, z, ẋ, ẏ, ż) 
replaced by (δR /R , δλ , δL , δṘ /R , δλ̇ , δL̇ ). 

2.3    State Vector Time Series 

Landmark (or star) residual shown in Fig. 1 is computed using the INR state vector SV . 
This requires evaluating SV  at a given time ti from KF SV and the parameters shown 
in Fig.  1. This is  done using l inear interpolation and transition matrices. 

For attitude telemetry time series spaced, e.g., at one second or 0.01 seconds and FDS 
orbit and thermoelastic models (SV , , SV , ) time series spaced, e.g., at  
one-minute, linear interpolation is used 

 
                               yi = y0 + [(y1 – y0)/(t1−t0)] (ti−t0)   t0  ti  t1                             (7) 

where (y0, t0) and (y1, t1) are two successive points in the time series with t0  ti  t1 and 
(yi, ti) is the interpolated point.  

State vector time series are spaced at times determined by landmark (or star) 
measurements which could be few minutes apart. In this case, its value at ti is determined 
from its value at t0 using transition matrix A(Δti), Δti = ti−t0 as described in Sect. 3.3. 

3 Improved Image Navigation Algorithm 

Figure 5 shows KF flow for the fundamental INR algorithm. KF uses one landmark (or 
star) at a time to determine best (a-posteriori) state vector and state covariance matrix 
(x , P ) estimate. KF is then re-initialized at t1 to make propagation always between t0  
and t1 and estimation at t1. 

 
Fig. 5  Five-Step Kalman Filter Flow   
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3.1   Five-Step Kalman Filter Process 

1. Compute a-priori state vector and state error covariance matrix (x , P ) from (x , P ) 
using the transition matrix A(Δt) of Sect. 3.3 and process noise covariance matrix 
Q(Δt) of Sect. 3.4 with Δt = t − t . This is called state vector and covariance matrix 
propagation from t0 and t1 

 
             x   =  A(∆t) x ,  P = A(∆t) P A(∆t) + Q(∆t)                             (8) 

 
2. Compute SV  from x  using sections 2.2 and 2.3. 
3. Compute landmark residual ∆𝑍=Z−Z using section 3.5. 

If landmark is accepted because residual is within predetermined limit, go to step 4. 
If landmark is rejected because residual is outside the predetermined limit set  
(t , x , P ) = (t , x , P ) and go to step 5.  

4. Compute (x , P ) from (x , P ) and measurement model (H,R) of Sects. 3.6 and 3.7. 
This is called state vector and covariance matrix estimation at t1  

 
                  x = x − K∆Z,   K  = P H (HP H + R)              (9.1)      

                        P = (I − KH) P (I −  KH) + KRK                                            (9.2) 
where  
       x = KF state vector  
       I = identity matrix 
       K = Kalman gain obtained from minimizing the trace of the covariance matrix P . 
       H = (∂Z ∂x⁄ )  = landmark location sensitivity matrix. 
       Z = estimated landmark measurement =Z0+ H x + . 
       Z0 = Z evaluated at x =  = 0 and  = measurement noise vector, E() = 0. 
       R= E(T), E denotes the expectation value. 
       P = E[e (e ) ] , e = x − x . P = E[e (e ) ] , e = x − x . 
       Note that P  of Eq. (9.2) is used instead of the classical P = (I − KH) P  to ensure   

 P  remains positive definite and symmetric [see Eqs. 13-72 & 13-76 in Ref. [19]].   
 

 Note also that (∆x , ∆x , ∆x ) = (x , x , x ) − (x , x , x )  
      obtained from Eq. (9.1) can cause jumps in level 1B images at t1. This can be avoided 

by adding its effect to (ẋ , ẋ , ẋ ) [also from Eq. (9.1)] by replacing  it with 
(ẋ , ẋ , ẋ )+(∆x , ∆x , ∆x )/δt , where, δt = delta time, e.g., to next  

      landmark (or star) or next KF event at t1.   After this slope adjustment, reset   
 
    (x , x , x ) = (x , x , x )                      (9.3) 

 
5. Re-initialize KF at t1 by setting (t ,  x , P ) = (t , x , P ) to start the next cycle from 

t0 to t1.  

3.2   Kalman Filter Initial Conditions 

Kalman filter initial conditions (x , P ) are needed to start KF at epoch t0 as shown in Fig. 
5. These, e.g., can be given by 
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      x = 0 , P = E[e (e ) ] , e = x − x =  x                         (10.1) 

                   P =

P ,       0       0

0       P ,        0

0       0       P ,

,  P , = σ ,

I    0  

0   0
,           (10.2) 

                  P , = σ ,

I   0  

0  0
,P , = σ ,

I    0  

0   0   
                        (10.3) 

 
(σ , , σ , , σ , ) are determined by error analysis.  

I3x3= 3x3 identity matrix, Imxm= mxm identity matrix.  
03x3= 3x3 null matrix, 0mxm= mxm null matrix.  
m= number of instrument internal misalignments.  

3.3   Transition Matrix A 

Kalman filter propagates the state vector via Eq. (8) with noise term omitted as shown by 
Eqs. (13-80) to (13-86) in Ref. [19] 

 
            x(t )  =  A(Δt ) x(t0)  , Δt  = t  – t ,            t ≤  t ≤ t                     (11.1) 

            A(Δt ) =

A (Δt )     0           0

0        A (Δt )      0

0       0       A (Δt )   

                         (11.2) 

A  and A  are obtained from Eq. (6.2) and A (Δt ) is obtained from Euler-Hill’s 
equations, e.g., Eq. (12.18) of Ref. [20], with n replaced by ω , (x, y, z, ẋ, ẏ, ż)  
replaced by (δR /R , δλ , δL , δṘ /R , δλ̇ , δL̇ ), and  ω ∆t  by γ 

          

A (Δt ) =
I   I Δt
0    I  

, A (Δt ) =
I    I Δt
0      I  

          (11.3) 

A (Δt )  =
A  A
A   A

                (11.4) 

A =

4 − 3 C      0      0

6 S  −  γ     1      0

    0                0      C

,  A =

           S             2  1 − C         0

−2 1 − C        4S  − 3γ      0

             0                         0               S

       (11.5) 

A =

3 ω S                0            0 

6ω C −  1     0           0 

              0              0 −  ω S  

  , A =

  C            2 S                 0 

−2 S      4C −  3        0 

    0                0                C

         (11.6) 

 
Where, Cx= Cos x, Sx= Sin x, and Tx= Tan x are used throughout this paper. 

3.4   Process Noise Covariance Matrix Q 

The process noise covariance matrix Q is obtained from the system modeling process 
noise vector w of Eq. (6.1) which is zero mean white noise assumed to be uncorrelated  
with the measurements noise vector   of Eq. (22)  

 
  E[w(t)] = 0 , E[w(t)w(τ) ] = V(t)δ (t − τ)           (12.1) 
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where, δ is the Dirac delta and V is known, symmetric, nonnegative definite matrix  
given by   

 V(t ) =

V ,        0      0

0        V ,     0

0       0    V ,

, V =

V     0    0
0     V    0
0     0   V

           (12.2) 

    V , =
σ , I      0  

   0        0
, V =

σ ,  I        0        

0           σ ,  I
          (12.3) 

y = corr, orb, or m. For m, 3 replaced by m. 
σ = measurement white noise standard deviation, rad. 
σ = random walk standard deviation, rad/sec1/2. 
σ = rate random walk standard deviation, rad/sec3/2. 

 
Now, Eqs. (13-79), (13-83) and (13-89) of Ref. [19], lead to  

  Q(∆t) = V(t ) + ∫ A(t, τ) V(τ)A(t, τ) dτ            (13.1) 

Substituting A  I + F(t-τ) in above equation leads to 

      Q(∆t) = V(t ) + V∆t + [FV + VF ]∆t + FVF ∆t                    (13.2)  

This leads to the closed form process noise covariance matrix 

                          Q(∆t) =

Q      0      0
0        Q     0
0       0    Q

                                (13.3)  

Where 

       Q =

σ , + σ ,  ∆t + σ , ∆t I   σ , ∆t I

               σ , ∆t I                        σ ,  ∆t I
  

              (13.4) 

y = corr, orb, or m. For m, I  is replaced by I .     
Note that the first element of the above matrix is the same as Eq. (7-143) in Ref. [19], 

which can be evaluated at, e.g., Δt = (1, 120, 300) seconds to solve for (σ , σ , σ ) from 
3 equations in 3 unknowns. 

3.5   Landmark Residual Computation 

The landmark residual ∆𝑍=Z−Z is needed for step 3 of Sect. 3.1 and it is computed in the 
next two subsections [see Eqs. (15.1) and (20.3)]. 

3.5.1   Actual Landmark Measurement Computation 

In view of Figs. 2 and 4 and using unit vector components along (Xi, Yi, Zi) fixed grid 
axes, we get 

 
  R⃗ = P⃗ − R⃗  , R⃗ = R R , P⃗ = (R + h)P, R⃗ = R R             (14.1) 

Where 
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R , =

RPi,Xi

RPi,Yi

RPi,Zi

=

SEFGF
 

−CEFGF
  SNFGF

CEFGF
 CNFGF

 
, P =

CLP
S∆λP

−SLP

−CLP
C∆λP

, R , =
0
 0 
−1

         (14.2) 

R = R 1 + a  S
 

 , a  = (1 − f) − 1 ≅ 2f  , Δλ = λ − λ             (14.3) 
And  

Req = equatorial radius = 6378137 meters, f = earth flattening=1/298.257222096. 
LP = landmark geocentric latitude, λP = landmark longitude. 
h = landmark height. 

 
This leads to the landmark coordinates to be stored in the landmark database 

 
                                                   Z = [E      N ]                                               (15.1) 

 
                                     E = sin (R + h)C S∆ R⁄           (15.2) 

                      N = tan {(R + h)S } {R − (R + h)C C∆ }⁄           (15.3) 

Where, 

         R = R⃗ = P⃗ − R⃗ = (R + h) + R − 2R (R + h)C C∆        (15.4)  

3.5.2   Estimated Landmark Measurement  

Estimated fixed grid coordinates (E , N ) are obtained from (E , N ) of Fig. 2 
and SVINR of Eq. (1) as shown in the next four subsections.  

3.5.2.1 LRF to IIRF Transformation 
The unit vector R  components in IIRF is given by Fig. 2. 

 

              R , = S ⋮ −C   S ⋮  C  C              (16.1) 

 
The transformation from (ELRF, NLRF) to (EIIRF, NIIRF) is given by Eqs. (6), (7.2), (7.3),  

(31.1) to (31.3), (38.1), (44.1), and (44.2) of Ref. [2]: 
 

    
E
N

=
E
N

− h SV                      (16.2)            

For single mirror instruments, FPM rotates by the angle N and 
 

   
E
N

=
Sin (cS + AC )

Tan ( )
           (16.3) 

                           c = √1 − a − b , A = a C + b S , B = b C − a S          (16.4) 

      h =
− S   ⋮        0            ⋮   0 ⋮          0           ⋮ 1 − C  ⋮  B  

1 − ⋮ (1 + S ) ⋮ T ⋮ (1 − C )/C ⋮  −T S ⋮ −A
         (16.5) 

                SV   = [ϕ    θ   O   O   O   ψ ]                         (16.6) 
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And 
 (E, N) = optical (East, North) scan angles = (2e, n)  
 (e, n) = mechanical (east, north) scan angles. 
 (a, b) = (E, N) detector LOS location relative to FPM center. 

For two mirror instruments, FPM reflected image does not rotate and  
 

  
E
N

=
Sin (cS + aC )

Tan ( )
                     (17.1) 

              h =
   0  ⋮         0             ⋮ 1 − C ⋮   b     
 T  ⋮ (1 − C )/C ⋮ −T S ⋮  − a

                           (17.2) 

                               SV = [O   O   O   ψ ]                                        (17.3) 

And  (E, N) = (2e, 2n) 
It should be mentioned that (O  , O , O , ψ ) = (Orthogonality, Orthogonality1, 

Orthogonality2, Yaw) misalignment state vector was first introduced by Kamel during 
his INR support (2005-2008) of GOES-R ABI implementation phase at ITT.    

Note that, inverse transformation to get (E , N ) from (E , N ) using Eq. (16.2) 
is needed to search for landmarks in level 1A data when IMC is off (or generate star LOS 
commands when IMC is off) from their (E , N ) coordinates of Eq. (18.2). This can 
be obtained by substituting (E, N) = (E , N ) and (a, b) = (0,0) in Eqs. (16.4) and 
(16.5) for single mirror instruments or in Eq. (17.2) for two mirror instruments. Note also 
that the misalignment state vector dimension = 6 for single mirror instruments and = 4 for 
two mirror instruments. This is because in single mirror instruments, the FPM reflected 
image rotates by the NS angle N while in the two mirror instruments, the FPM reflected 
image does not rotate. 

Because E + N ≤ 8.7°, the effect of (1-CE) and/or (1-CN) terms in hm on INR 

performance could be insignificant. Also, because (a, b) are small, ψ  effect could be 
insignificant. In this case, only orthogonality misalignment O  is used [14,17] and the 
number of misalignments m=3 for single mirror and =1 for two mirrors. This suggests 
that KF INR software design should be based on deleting O  and/or O  in addition to 
ψ  if proven to be insignificant by analysis and/or during IOT. 

It should be mentioned that the yaw misalignment state ψ  determination requires star 
and/or landmark measurements to be located at maximum separation from the FPM center. 
This is because the measurement residuals are not sensitive to ψ for measurements at 
the FPM center (i.e., a = b = 0). If this complicates INR operation, a special on orbit test 
(or inspection of level 1B swath to swath imagery data) can  determine ψ bias (i.e., 
constant term). The use of this bias in Eqs. (16.6) or (17.3) should at least reduce (but not 
eliminate) ψ  effect on INR performance. The special test consists of sighting a star (or 
a landmark) 3 times. The first time t1 determines the location of the star (or landmark) 
within the FPM, second time t2 makes the star (or landmark) located near the extreme 
south of the FPM, and third time t3 makes the star (or landmark) located near the extreme 
north of FPM. The ψ bias is then computed from ψ = (E − E )/(N − N ), where  
(E , E ) are the second and third star (or landmark) EW locations and (N , N ) are the 
corresponding NS locations. Note that the third measurement must be rectified to the time 
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of the second measurement. This rectification is performed using spacecraft attitude 
telemetry and orbit knowledge to subtract spacecraft attitude and orbit effects on star (or 
l a n d m a r k )  m o t i o n  r e l a t i v e  t o  s p a c e c r a f t  b e t w e e n  t 2  t o  t 3 .  

3.5.2.2  IIRF to FGF Transformation 
The transformation of R ,  components of Eq. (16.1) to R ,  is given by  

                   R , = R ,     R ,     R , = M R ,                        (18.1)        
                                

                       R , = M R ,  for inverse transformation.              (18.2) 

The matrix M rotation is type 3-1-2 as shown in Fig. 4. Using Appendix E, Table E-1 of 
Ref.  [19] ,  and replacing (ϕ, θ, ψ) with (ψ , ϕ , θ )  shown in Fig.  4, we get 

 

          M =

C C − S S S    C S + S  S C   − S C  

−S C                            C C                        S

 S C + C S S      S S − C S C       C C  
          (18.3)  

3.5.2.3   RP, λP, LP Computation 
In view of Figs. 3 and 4, Eqs. (14.1) (14.2), we get 

 
                   P⃗ = R⃗ +  R⃗ , P⃗ = (R + h)P, R⃗ = R R ,  R⃗ = R R                            (19.1)  

           P =

CLP
S∆λP

−SLP

−CLP
C∆λP

, R , =

C S∆

−S

−C C∆

, R , =

R ,  

R ,

R ,

= MR ,        (19.2) 

and R  is obtained from 
 

P⃗ = R⃗ + R⃗ = R R + R R  → (R + h) = R + R − 2R R C                       

C = −dot product of  R  and R  = −R , C S∆ + R , S + R , C C∆  
Solution of the above quadratic equation in R  leads to 

          R = , r = C − C −  C  , C =  1 –  [(R + h) R⁄ ]            (19.3) 

Where 

R = R 1 + a  S
 

 , Req and a   are obtained from Eq. (14.3) 
(S , λ , LP) obtained from Eqs. (19.1) and (19.2) 

S = R (S − R , /r)/(R +h) , LP = Sin-1[R (S − R , /r)/(R +h)]                (19.4)   

λP = λSi + ΔλP = λSi + Tan-1[(r C S∆ +R , )/(r C C∆ − R , )]            (19.5)   

Note that because ae  0.007 in the Re equation, accurate Re and r values should be 
obtained using couple of iterations starting with R = Req on the right side of the r and 

S equations. Note also that C −  C  is imaginary when C <  C . This indicates 

that LOS (E , N ) correspond to a point outside Earth and the transition from Earth to 
space is undefined. This can be avoided if a fictitious earth with   C  = C  is used in 

Eq. (19.3) for the space portion of earth images. In this case, Eq. (19.3) reduces to  
 

              R = R C , r = 1/C               (19.6)   
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3.5.2.4 Fixed Grid Coordinates Computation  
In view of Figs. 2 and 4 and using Eqs. (14.1), (14.2), (19.1), and (19.2), we get 

                                  R⃗ =  R⃗ + R⃗ − R⃗                                                (20.1) 

R , =

R ,

R ,

R ,

= {MR , + r[R , − R , ]}  = 

S  

−C   S

C  C  
        (20.2)                   

     Z =
E
N

= 
Sin R ,

−Tan (R , R , )
               (20.3) 

Note that for star measurements, R⃗ − R⃗  is insignificant compared to  R⃗  in Eq. (20.1) 
and, therefore,  RPi,FGF= R ,  and Z is directly obtained from Eq. (18.1) and Sect.  
3.5.2.3 is skipped. 

3.6   Landmark Location Sensitivity Matrix H 

The matrix H is used in step 4 of Sect. 3.1  

 H = ( )  = [H     H      H ], H =   0        (21.1) 

Where y = corr, orb, or m and n=3 for y = corr and orb and n = m for y = m. The matrix 

H is obtained from the first and second rows of Eq. (20.2) with matrix M of Eq. (18.3) 

and R ,  of Eq. (19.2)  linearized using (sin ζ, cos ζ) ≅ (ζ, 1). SVINR is obtained in 

terms of x from Eqs. (1.1) to (5.4). Substituting Eqs. (14.2), Eq. (16.1), and (19.2) in Eq.  

(20.2), we get  

                                       R R ≅ 1⁄ − ∆ R R⁄                           (21.2) 

                  R R⁄  1 − r C  C ⋮  − S ⋮ − C   S SV           (21.3) 

                 
S  

−C S
 

≅
S

−C S
 

+ G SV + rG SV            (21.4) 

                             G = −C
      0             C        S

−C           0           T
          (21.5) 

       G =
C  C S                  C                     − S S C  

−C C   S        C  S   S    − (1 − C S )
   (21.6) 

 
Where, SV  is form Eq. (1.2) and SV  from Eq. (1.5).  

 
Now, the partial derivatives of Eq. (21.4) w.r.t. y and using Eq. (16.2) for the partial 

derivatives of (E , N ) w.r.t. xm lead to the H matrix of Eq. (21.1). Note that  
∂SV ∂x⁄ = I. This leads to     
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1. Hcorr is due to partial derivatives w.r.t. (x , ẋ ) of Eqs. (1.2), (1.3), and (5.2) 

         H = −[h    0 ], h =
0          C                S  
1        T S    − T C

, T =  S /C    (21.7)  

(E, N)  (E , N ) of  Eq. (15.1) (i.e., from landmark or star database). 
2. Horb is due to partial derivatives w.r.t. (x , ẋ ) of Eqs. (2), (3.1) and (5.3)  

 

H  = −[h       0 ], h =  −r̅ 
S C           C      − S S   
 S /C          0           C /C

                   (21.8) 

Where, 
r̅ = R R⁄ = [C − (C − C ) / ]       
C = C C , C =  1 −  [(R + h) R⁄ ] , (E, N)  (E , N ) 

R  = earth radius from Eq. (14.3) evaluated at landmark geocentric latitude LP from 
the landmark database.  
Note that for star measurements, R is insignificant compared to R  and, therefore,  r̅ 
 0. This indicates that star measurement residuals are insensitive to orbit translation 
and orbit must be determined either using landmark measurements or by FDS using 
ground ranging or GPS receiver on board spacecraft. 

3. H  is due to partial derivatives w.r.t. (x , ẋ ) of Eqs. (4.1), (4.2), and (5.4) 

  H = −[h       0 ], h =
C    …   C  
C    …   C

            (21.9) 

Where 3  m   6 for single mirror instruments and 1  m   4 for two mirrors  
instruments as described in Sect. 3.5.2.1. 

3.7   Landmark Measurement Noise Covariance Matrix R  

The matrix R is used in step 4 of Sect. 3.1 

       R =  E(T) = σ I , σ =  σ + σ             (22) 

 = measurement noise vector 
σ = landmark measurement one sigma error.  
σ = position error within the data base. 
σ  = matching error of landmark chip to imagery data. 

3.8   Attitude Computation from Inertial Angular Rate Telemetry  

The spacecraft inertial angular rates (ω , ω , ω ) provided in wideband data every Δtatt 

seconds (e.g., 0.01 seconds) can be directly used to determine SVACF  of Eq. (1.2). The 

rate SV̇  is determined from ( ω , ω , ω ) using Fig. 4 with IIRF and (ϕ, θ, ψ)  

replaced by ACF and  (ϕ, θ, ψ) .    Starting with  θ̇ + ω  about −Y  axis, followed 

by ϕ̇  about the new −X axis, and ending with ψ̇  about −Z  axis and using M of 
Eq. (18.2), we get 
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ω
ω
ω

= −ψ̇
0
0
1

− ϕ̇

C

S

0

− (θ̇ + ω )

−S C  

C C

S
         (23.1) 

This leads to 

   SV̇ =

ϕ̇

θ̇
ψ̇

= −

ω S + ω C

ω + (ω C − ω S )/C

ω − (ω C − ω S )S /C  

      (23.2) 

Now, SVC of Eqs. (1.2) and (1.3) is re-defined to separate SV ,   
 

      SV = SV + SV , ,  SV = SV + x ,  SV̇ = SV̇  + ẋ        (23.3) 
 

And the SV  is computed over ∆t = t − t  from Eqs. (23.2) and (23.3) as follows:  
Let j = Integer(Δt/Δtatt), τ = t + i Δt  and do the following  
      For i = 1, …, j plus final step from τ  to t  

                  SV (τ ) = SV (τ ) + SV̇ (τ )Δt                (23.4)    

At the start of Kalman filter 

 (SV , x , ẋ ) = (03, 03, 03) and SV̇ (t ) = SV̇ (t )  from Eq. (23.2).                            

At KF re-initialization (see Fig. 5)  
SV (t ) = SV (t ) from Eq. (23.4) and SV̇ (t ) = SV̇ (t ) from Eq. (23.3) 

 
Note that ẋ  in Eq. (23.3) compensates for IMU drift effect on SV̇  of Eq. (23.2).  

3.9   KF Detailed Computation (for each data block) 

Level 1A data block is searched for landmarks and if there are no landmarks found within 
the data block, go to the end of the block (item b below). If landmarks (e.g., a total of 
LMT) are found, the location (ELRF, NLRF) of each determined landmark is time tagged, 
e.g., in coordinated universal time (UTC). In view of Fig. 5, the KF propagation process 
starts from (t , x , P ) of the last event prior to the data block to the first (t , x , P ) 
within the data block followed by SVINR and ΔZ computations. If ΔZ is acceptable, 
proceed to (t , x ,P ) estimation and KF re-initialization at t1. This is repeated for all 
landmarks within the level 1A data block as follows 

a. For k=1 to LMT do to ENDFOR 
t =  UTCk at landmark number k, ∆t = t − t             
Propagation: From step 1 of section 3.1. 
INR SV (SVINR): From step 2 of section 3.1. 
Residuals ΔZ: From step 3 of section 3.1. 
Estimation: From step 4 of section 3.1. 
Re-initialize KF at t1: From step 5 of section 3.1. 
ENDFOR 
b. At end of data block, do the following 
t1= UTCend at end of data block, ∆t = t − t            
Propagation: From step 1 of section 3.1. 
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Re-initialize KF at t1 
(t ,  x , P ) = (t , x , P ) = (t , x , P ).           
If maneuver delta V is provided by FDS 
c. At maneuver, do the following 
t1= UTCmaneuver at maneuver time, ∆t = t − t            
Propagation: From step 1 of section 3.1. 
Re-initialize KF at t1 
(x , P ) = (x , P ) + (∆x, ∆P)                                   

∆x = R 0   ∆v ,   ∆v ,    ∆v ,    0       

∆P diagonal terms 10 to 12 are obtained from Δv errors.  
(t ,  x , P ) = (t , x , P ).             
If orbit is provided by FDS instead of delta V 
d. At orbit determination (OD), do the following 
t1= UTCOD at OD time, ∆t = t − t         
Propagation: From step 1 of section 3.1. 
Re-initialize KF at t1  
(x , P ) = (x , P ) + (δx, δP)                                   
δx = [0   ∆R /R    Δλ  L  0    0 ]       

     −[0    ∆R /R    Δλ  L  0   0 ]   

Note that x is selected to avoid jumps in Eq. (3.1) at OD.  
δP diagonal terms 7 to 9 and 12 are obtained from OD errors.  
(t ,  x , P ) = (t , x , P ).             

3.10   Thermoelastic Model Time Series 

The thermoelastic effects are caused by the apparent motion of the sun around the 
spacecraft which repeats daily with a slow seasonal variation. This suggests modeling 
(SV , SV ) of Eqs. (1.3) and (1.7) by, e.g., 15th order Fourier series with one solar day 
fundamental period like that used by Kamel for GOES I-M [see Sects. 4.3 and 4.6 of Ref. 
[3] and Eq. (1) of US patent #602391].    

The following are additional two approaches to determine time series for (SV , , 

SV , ), e.g., once/day  

1. represent (SV , , SV , ) by Fourier series and use off-line least squares to 

determine the Fourier series coefficients from previous 7 days of (SV , SV ) data. 
The results are then used to generate the next day (SV , , SV , ) time 

series.  

2. seven-day average of (SV , SV ) data 
a. create uniform time series at, e.g., one-minute interval using interpolation of 

original (SV , SV ) time series. 
b. the uniform time series are then used to generate the next day (SV , , 

SV , ) time series as follows 

For i= 1, 2, ∙∙∙, 1440, compute the 8th day models from previous 7 days state vectors  
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SV ,  (t , ) = ∑ SV (t , ), SV ,  (t , ) =  ∑  SV  (t , )         (24) 
         
Note that (SV , , SV , ) are initially set to (03, 0m) at the start of KF. Note 

also that (x , x ) should be adjusted to avoid jumps in Eqs. (1.3) and (1.7) at the 
transition time from old time series to new time series (e.g., at midnight or OD time). 
Also, (SV , , SV , ) are uploaded daily for IMC on-board Spacecraft [1].  

4 INR Improvement for Single Mirror Instruments  

The use of Eq. (16.6) instead of the classical SV = [ϕ    θ ] in GOES I-M and 
MTSAT-1R type instruments is expected to improve INR performance and could have 
improved GOES I-M and MTSAT-1R INR performance if it was available at that time.  

 4.1   GOES I-M Type Instruments 

The yaw misalignment ψ  has insignificant effect because the visible array dimension is 
1 km x 8 km and the IR array dimension is 4 km x 8 km (see pages 28 and 29 of Ref. 
[21]). Therefore, using Eqs. (16.5) and (16.6) with (A, B) = (56, 112) rad, a misalignment 
yaw  ψ  =1000 rad produces  (EW, NS) errors = (E, N)  (0.112,0.056) rad which 
are insignificant. On the other hand, the orthogonality Om due to thermal variation and/or 
bias of 500 rad produces large NS star measurement residual error = Om Tan E  100 
rad (= 30% of  Om) at E = 11 and NS landmark measurement residual error = Om Tan E 
 75 rad at E = 8.7 . This error has small effect on frame-to-frame registration but has 
significant effect (150 rad = 30% of Om) on within frame registration. The secondary 
orthogonality misalignments ( O , O )  thermal variation and/or bias of 500 rad 
produces smaller EW and NS errors because their effects on INR performance is 
multiplied by (1-CE) and (1-CN).  This suggests that Kalman Filter INR software design 
should be based on deleting ψ , O and/or O  if proven to be insignificant by analysis 
and/or during In Orbit Test (IOT).  

4.2    MTSAT-1R Type Instruments 

MTSAT-1R FPM dimension is about 26 km x 336 km (see Fig. 5 in Ref. [22]). Therefore, 
Therefore, using Eqs. (16.5) and (16.6) with (A, B) = (364, 4704) rad and ψ  = 1000 
rad produces (E, N)  (4.7, 0.4) rad errors. The orthogonality and the secondary 
orthogonality angles (O , O , O )  produce the same errors described in Sect. 4.1. 

During MTSAT-1R IOT, large residual errors between the actual INR measurements 
and their predicted values led to unsatisfactory imagery products. Many hypotheses were 
advanced to explain these errors during rigorous, extensive testing and analysis of the 
daily landmark residual plots led by Mr. Seiichiro Kigawa of Japan Meteorological 
Agency (JMA). This analysis concluded the existence of systematic errors, but none led 
to effective correction. To minimize cost and schedule delays of a protracted investigation, 
ParSEC method was developed and later patented [23] that could remove these systematic 
errors without the need to know their origin. In this new method, the various residual 
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errors are modeled in terms of a power series whose coefficients are determined by a least 
squares algorithm to minimize the landmark residuals. The ParSEC algorithm corrects the 
detected East and North scan angles (E, N) from a distorted raw image into a non-distorted 
(E, N) space as 

 
         (E , N ) = (E, N) − (∆E, ∆N)                                                      (25.1)  
      ∆E = A + A E+A N + A EN + A E + A N                (25.2) 

   ∆N = B + B E+B N + B EN + B E + B N                         (25.3) 
Where 
(E, N) = Instrument (EW, NS) scan angles from raw image 
E, N) = ParSEC (EW, NS) correction angles 
(E, N) = ParSEC (EW, NS) corrected scan angles 
(Ai, Bi) = E, N) power series ith ParSEC coefficient  
 
The navigation solution residuals after implementation of this method were typically 

about 14 rad for stars (~1 raw visible star sense pixel), 20 rad for visible landmarks 
(~2/3 visible image pixel), and 40 rad for IR landmarks (~1/3 IR image pixels), which 
were consistent with expected INR performance. Recently, the ParSEC algorithm was 
also used in Ref. [24] to improve INR performance. 

Note that some of the terms in Eqs. (25.2) and (25.3) are covered by the improved 
misalignment Eqs. (16.5) and (16.6) (using cos x  1- x2/2, sin x  x) and were not covered 
by the first two columns of Eq. (16.5) that was available at MTSAT-1R time. Most likely, 
these were the unknown source of the systematic errors. If this is the case, the improved 
misalignment Eqs. (16.5) and (16.6) could eliminate future need for the ParSEC algorithm. 

5 Conclusion 

Improved image navigation algorithms are presented using KF to determine attitude 
correction angles, orbit, and instrument misalignments using landmark measurements and 
orbit maneuvers delta V (or orbit with coarse accuracy) provided by FDS. Application to 
systems with star and landmark measurements and systems with star only measurements  
are also presented. The use of the presented improved algorithms is shown to significantly 
improve the INR performance for single mirror instruments like those used for GOES I-
M and MTSAT-1R and for two mirror instruments like the ABI used for GOES-R. 
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